nodding.py 32.4 KB
Newer Older
Monica Rainer's avatar
Monica Rainer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Last modified: 2017-03-07

Reduction of the single AB nodding:
- check the image quality (signal in well defined region)
- check that the exposure times of A and B are the same
- remove bad pixel using the bad pixel mask
- create nodding A-B
- straigthen the nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
Reduction of the nodding group:
- average the A noddings
- average the B noddings
- create average nodding A-B
- straigthen the average nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
"""


from drslib.config import CONFIG
from drslib import db, varie

from astropy import units as u
from astropy.io import ascii, fits

import warnings
from astropy.utils.exceptions import AstropyWarning
import ccdproc

import numpy as np
import math, os, subprocess, time, shutil

from collections import OrderedDict
#import matplotlib.pyplot as plt


class GBNodding():
    def __init__(self, nodding, group, dbconn):
        self.nodding = nodding
        self.group = group
        self.dbconn = dbconn
        self.quality = []
        self.messages = []
        self.nodlist = []
        self.nodcorr = {}

    def qualitycheck(self):
        """
        Check image's quality: check the signal in a well-defined region.
        If one of the nodding images fails the check, the other will be discarded too.
        Check that the exposure time of the nodding is the same for the two images.
        """

        expt = []
        for frame in self.nodding:
            #print frame

            nod = ccdproc.CCDData.read(frame, unit=u.adu)
            expt.append(nod.header[CONFIG['KEYS']['EXPTIME']])

            # check the signal in a well-defined zone

            zone = nod.data[CONFIG['SCIENCECHECK'][0]:CONFIG['SCIENCECHECK'][1],CONFIG['SCIENCECHECK'][2]:CONFIG['SCIENCECHECK'][3]]
            mean = np.mean(zone)

            if mean < CONFIG['NODSIGNAL']:
                self.messages.append('Science frame %s failed quality check: signal too low (%s). Neither of the nodding images (%s and %s) will be reduced.' % (str(os.path.basename(frame)),str(mean),str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
                nod = None

                return False

            else:
                self.nodlist.append(nod)

        if expt[0] != expt[1]:
            self.messages.append('The two nodding images %s and %s have different exposure times and they can not be reduced.' % (str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
            return False

        return True


    def createAB(self):
        """
        Create nodding images A-B and save them in temporary directory if
        the keyword SPEXTMODE is set to GRPAVG_EXT.
        """

        hea = self.nodlist[0].header

        badpix = ccdproc.CCDData.read(CONFIG['BADPIX_MASK'], unit=u.adu)
        bad_mask=badpix.data
        inverse_mask=np.logical_not(bad_mask)

        for nod in self.nodlist:

            # mask the image using the badpix mask
            nod_corrected = varie.badpix(nod.data,bad_mask,inverse_mask)
            self.messages.append('Bad pixel correction done.')

            nod_corr = ccdproc.CCDData(nod_corrected,unit=u.adu)
            nod_corr.header = nod.header

            self.nodcorr[nod.header[CONFIG['KEYS']['SLIT']]] = nod_corr
            nod = None

        # Create A-B image

        nodA = self.nodcorr[CONFIG['A']]
        nodB = self.nodcorr[CONFIG['B']]
        AB = nodA.data - nodB.data
        nodAB = ccdproc.CCDData(AB, unit=u.adu)
        nodAB.data = np.asarray(nodAB.data, dtype='float32')
        nodAB.header = hea
        heaA = nodA.header
        heaB = nodB.header
        #qui = str(os.path.basename(self.nodding[0])).rindex('.')
        #ABnome = '_'.join((str(os.path.basename(self.nodding[0]))[0:qui], 'AB.fits'))
        nomebase = os.path.splitext(os.path.basename(self.nodding[0]))[0]
        ABnome = '_'.join((nomebase, 'AB.fits'))

        keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
        mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
        mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

        for h in (heaA,heaB,nodAB.header):
            h[CONFIG['GAIN_EFF'][0]] = (CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
            h[CONFIG['RON_EFF'][0]] = (CONFIG['RON']*math.sqrt(2),CONFIG['RON_EFF'][1])
            h[CONFIG['KEYS']['NCOMBINE']] = 2
            h[keyA] = (nodA.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdA] = (nodA.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])
            h[keyB] = (nodB.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdB] = (nodB.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])

        nodAB.header[CONFIG['KEYS']['FILENAME']] = ABnome
        #nodAB.header[CONFIG['KEYS']['IMANAME']] = ABnome
        ABtmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)


        try:
            nodAB.header[CONFIG['KEYS']['EXTMODE']]
        except:
            nodAB.header[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaA[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaB[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']

        if nodAB.header[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTAVG']:
            self.group['noddings'].append(ABtmpnome)


        hdu = fits.PrimaryHDU(data=nodAB.data,header=nodAB.header)
        nodABfits = fits.HDUList([hdu])
        nodABfits.writeto(ABtmpnome,clobber=True)

        self.messages.append('A-B nodding created.')
        nodA = None
        nodB = None

        return ABtmpnome, heaA, heaB

    def reduce(self,fitsfile,slit_pos,hea):
        """
        Straighten, divide by the masterflat, optimal extraction
        """

        if slit_pos == CONFIG['A_POS']:
            slit = 'A'
        else:
            slit = 'B'

        # straighten

        straight = fitsfile.replace('.fits','_str.fits')
        args = [CONFIG['STRAIGHT'],fitsfile,straight,CONFIG['STRAIGHT_OPT']]
        subprocess.call(args)
        str_file = os.path.join(CONFIG['RED_STR'],os.path.basename(straight))
        try: shutil.copyfile(straight,str_file)
        except: pass

        self.messages.append('%s: orders straightened (nodding %s).' % (str(os.path.basename(fitsfile)),slit,))

        imstr = ccdproc.CCDData.read(straight, unit=u.adu)
        hea_ima = hea
        for key in CONFIG['STRAIGHT_PAR']:
            hea_ima[CONFIG['STRAIGHT_PAR'][key]] = imstr.header[CONFIG['STRAIGHT_PAR'][key]]
        imflat = imstr.data

        # read the number of images averaged to obtain the current image
        # in order to compute the SNR
        try: nspec = hea_ima[CONFIG['KEYS']['NCOMBINE']]
        except: nspec = 1

        # use only the regions of the orders
        try:
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)
        except:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False
            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            mflat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            varie.buildMaskC(mflat.data)
            self.messages.append('The extraction mask was created.')
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)

        gmask = goodmask.data


        roneff = hea_ima[CONFIG['RON_EFF'][0]]
        gaineff = hea_ima[CONFIG['GAIN_EFF'][0]]


        if CONFIG['USE_FLAT']['global']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = np.mean(flat.data)
            norflat = np.true_divide(flat.data,meanflat)
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)

        elif CONFIG['USE_FLAT']['order']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]


        elif CONFIG['USE_FLAT']['nor']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatnor')
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = 1.0
            norflat = flat.data
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)


        try:
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
        except:
            masterlamp = False

        if not masterlamp:
            db.copy_dbfile(self.dbconn,'une_str')
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
            db.copy_dbfile(self.dbconn,'une_calib')
            self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))

        mlamp = ccdproc.CCDData.read(masterlamp, unit=u.adu)

        lroneff = mlamp.header[CONFIG['RON_EFF'][0]]
        lgaineff = mlamp.header[CONFIG['GAIN_EFF'][0]]

        # read the lines to use in the wavelength calibration
        select_lines, all_lines = varie.UNe_linelist()

        # prepare the structure for the calibrated results
        heacal = OrderedDict()
Monica Rainer's avatar
Monica Rainer committed
298
299
300
301
        #stdSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        optSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        fsnr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
302

Monica Rainer's avatar
Monica Rainer committed
303
304
305
306
        all_cosmics = 0
        for x in xrange(CONFIG['N_ORD']):
            start = x*CONFIG['W_ORD']
            end = min(start+CONFIG['W_ORD'],CONFIG['YCCD'])
Monica Rainer's avatar
Monica Rainer committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

            # select only the rows wit the signal using the appropriate mask

            omask = gmask[start:end]

            order = imflat[start:end]
            if slit_pos == CONFIG['B_POS']:
                order = -order

            if CONFIG['USE_FLAT']['order']:
                ordflat = flat.data[start:end]
                # divide by masterflat normalized by its average value
                meanflat = np.mean(ordflat)
                norflat = np.true_divide(ordflat,meanflat)
                with np.errstate(divide='ignore', invalid='ignore'):
                    order = np.true_divide(order,norflat)

            ordermasked = np.ma.MaskedArray(order,mask=omask)
            goodorder = np.ma.compress_rows(ordermasked)

Monica Rainer's avatar
Monica Rainer committed
327
328
            optSpectrum[x],varOptFlux,profile,x1,x2,cosmics = varie.optExtract(goodorder,gaineff,roneff,slit_pos,x)
            all_cosmics = all_cosmics + cosmics
Monica Rainer's avatar
Monica Rainer committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

            #snr.append(round(max( (np.mean(optSpectrum[x][1000:1050])/np.std(optSpectrum[x][1000:1050])) ,0),2))
            #optSpectrum[x] = optSpectrum[x][::-1]
            #varOptFlux = varOptFlux[::-1]

            #t3 = time.time()

            olamp = mlamp.data[start:end]
            orderlamp = np.ma.MaskedArray(olamp,mask=omask)
            goodlamp = np.ma.compress_rows(orderlamp)

            extlamp = varie.extract(goodlamp, optSpectrum[x], x1, x2, profile, lgaineff, lroneff)

            if any(CONFIG['USE_FLAT'].values()) is True:
                extflat = varie.extract(norflat, optSpectrum[x], x1, x2, profile, fgaineff, froneff)
                #print extflat
                with np.errstate(divide='ignore', invalid='ignore'):
                    fsnr[x] = (np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))))/(fgaineff*(extflat*meanflat))
                    fsnr[fsnr==np.inf] = 0
                    fsnr[fsnr==-np.inf] = 0
                    fsnr = np.nan_to_num(fsnr)
                #print fsnr
            else:
                fsnr[x] = np.zeros(len(optSpectrum[x]))

            with np.errstate(divide='ignore', invalid='ignore'):
                ssnr = (np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])))/(gaineff*nspec*optSpectrum[x])
                snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))

            calib_failed, coeffs, comments = varie.UNe_calibrate(extlamp,x+32,select_lines[x+32],all_lines[x+32])

            for comment in comments:
                self.messages.append(comment)


            if calib_failed:
                self.messages.append(' *** WARNING ***')
                self.messages.append('The default wavelength calibration for the order %s will be taken from the database and as such it will not be optimal for the night.' % (str(x+32),))
                wcalib = db.extract_dbfile(self.dbconn,'une_calib')
                wlc = ccdproc.CCDData.read(wcalib, unit=u.adu)
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = wlc.header[keyword]

            else:
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = (coeffs[key],CONFIG['WLCOEFFS'][key][1])


        optSpectrum = np.asarray(optSpectrum, dtype='float32')

        self.messages.append('The nodding %s was extracted.' % str(slit),)
Monica Rainer's avatar
Monica Rainer committed
382
383
384
385
386
        if all_cosmics == 1050:
            self.messages.append('%s cosmics were removed (maximum iteration reached).' % str(all_cosmics),)
        else:
            self.messages.append('%s cosmics were removed.' % str(all_cosmics),)

Monica Rainer's avatar
Monica Rainer committed
387
388
389
390
391
392
393

        if slit_pos == CONFIG['A_POS']:
            keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            aname = hea_ima[keyA]
            nomebase = os.path.splitext(aname)[0]
            #qui = aname.rindex('.')
            if 'grp' in fitsfile:
394
395
396
397
                msfx = ''.join(('Agrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Agrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
398
            else:
399
400
401
402
403
404
405
                msfx = ''.join(('A_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('A_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'A_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'A_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
406
407
408
409
410
411
412
413

            #calname = str(os.path.basename(fitsfile)).replace('_AB','_A')
        elif slit_pos == CONFIG['B_POS']:
            keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
            bname = hea_ima[keyB]
            nomebase = os.path.splitext(bname)[0]
            #qui = bname.rindex('.')
            if 'grp' in fitsfile:
414
415
416
417
                msfx = ''.join(('Bgrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Bgrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
418
            else:
419
420
421
422
423
424
425
                msfx = ''.join(('B_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('B_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'B_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'B_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
426
427
428
429
430
431
432
433
434
435
            #calname = str(os.path.basename(fitsfile)).replace('_AB','_B')
        else: 
            print 'Wrong slit position!'


        heaspe = fits.Header(hea_ima)
        heaspe[CONFIG['KEYS']['FILENAME']] = calname
        drs_mjd = float(heaspe[CONFIG['KEYS']['MJD']]) + (float(heaspe[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        heaspe[CONFIG['DRS_MJD'][0]] = (drs_mjd,CONFIG['DRS_MJD'][1])

436
437
438
439
440
        if masterflat:
            heaspe[CONFIG['MASTERFLAT'][0]] = (os.path.basename(masterflat),CONFIG['MASTERFLAT'][1])
        if masterlamp:
            heaspe[CONFIG['MASTERLAMP'][0]] = (os.path.basename(masterlamp),CONFIG['MASTERLAMP'][1])

Monica Rainer's avatar
Monica Rainer committed
441
442
443
444
        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
445
446
447
448
449
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(slit),str(round(np.mean(snr[39]),2))),)
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % (str(slit),str(round(np.mean(snr[29]),2))),)
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % (str(slit),str(round(np.mean(snr[14]),2))),)
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % (str(slit),str(round(np.mean(snr[3]),2))),)

Monica Rainer's avatar
Monica Rainer committed
450

Monica Rainer's avatar
Monica Rainer committed
451
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
452
453
454
455
456
457
458
459
460
461
462
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            heaspe[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])

        heaspe[CONFIG['WLFIT'][0]] = (CONFIG['WLFIT_FUNC'],CONFIG['WLFIT'][1])
        for hea in heacal:
            heaspe[hea] = heacal[hea]

        barycorr, hjd = varie.berv_corr(heaspe)
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])

Monica Rainer's avatar
Monica Rainer committed
463
464
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
465
466
            waves[o] = varie.wcalib(heaspe,o)

467
468
469
470
471
472
473
474
475
        #spefits = fits.PrimaryHDU(optSpectrum,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])

        #calname = os.path.join(CONFIG['RED_DIR'],calname)
        #results.writeto(calname,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
476

477
478
479
480
481
482
483
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=optSpectrum)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
484
485

        calname = os.path.join(CONFIG['RED_DIR'],calname)
486
        tbhdu.writeto(calname,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
487

Monica Rainer's avatar
Monica Rainer committed
488
489
490
491
492
493
494
        #t1 = time.time()

        #print 's1d'
        #print calname1d

        if CONFIG['S1D']:
            #s1d = varie.create_s1d(optSpectrum,snr,heaspe)
495
            s1d, startval = varie.create_s1d(optSpectrum,heaspe)
Monica Rainer's avatar
Monica Rainer committed
496
497
            heaspe[CONFIG['KEYS']['FILENAME']] = calname1d
            heaspe['CRPIX1'] = (1.,'Reference pixel')
498
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
499
500
501
502
503
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

504
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
505
506
507
508
509
            calname1d = os.path.join(CONFIG['RED_DIR'],calname1d)
            s1dfits.writeto(calname1d,clobber=True)

        #t2 = time.time()
        #print 's1d spectrum: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
510
511
512
513
514
515
516
517
518
519
520
521

        if hea_ima[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTPAIR']:
            return calname, fsnr, straight

        elif 'grp' in fitsfile:
            return calname, fsnr, straight

        return calname, fsnr, False


    def combine(self,acalib,bcalib,fsnr):

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        #abnome = acalib.replace('_A_e2ds.fits','_AB_e2ds.fits')
        #abnome1d = acalib.replace('_A_e2ds.fits','_AB_s1d.fits')
        #abnome = abnome.replace('_Agrp_e2ds.fits','_ABgrp_e2ds.fits')
        #abnome1d = abnome1d.replace('_Agrp_e2ds.fits','_ABgrp_s1d.fits')

        old = ''.join(('_A_',CONFIG['UNMERGED'],'.fits'))
        oldgrp = ''.join(('_Agrp_',CONFIG['UNMERGED'],'.fits'))
        sfx = ''.join(('_AB_',CONFIG['MERGED'],'.fits'))
        msfx = ''.join(('_AB_',CONFIG['UNMERGED'],'.fits'))
        grp = ''.join(('_ABgrp_',CONFIG['MERGED'],'.fits'))
        mgrp = ''.join(('_ABgrp_',CONFIG['UNMERGED'],'.fits'))

        abnome = acalib.replace(old,msfx)
        abnome1d = acalib.replace(old,sfx)
        abnome = abnome.replace(oldgrp,mgrp)
        abnome1d = abnome1d.replace(oldgrp,grp)

Monica Rainer's avatar
Monica Rainer committed
539
540
        #print abnome
        #print abnome1d
Monica Rainer's avatar
Monica Rainer committed
541
542

        acal = fits.open(acalib)
543
544
545
546
547
548
549
550
551
552
553
554
555
556

        #afluxes = acal[0].data
        #awaves = acal[0].header
        #roneff = math.sqrt(2)*acal[0].header[CONFIG['RON_EFF'][0]]
        #gaineff = 2*acal[0].header[CONFIG['GAIN_EFF'][0]]
        adata = acal[1].data
        #print adata.shape
        afluxes = adata.field(2)
        #print afluxes
        #print afluxes.shape
        awaves = acal[1].header
        roneff = math.sqrt(2)*acal[1].header[CONFIG['RON_EFF'][0]]
        gaineff = 2*acal[1].header[CONFIG['GAIN_EFF'][0]]

Monica Rainer's avatar
Monica Rainer committed
557
        bcal = fits.open(bcalib)
558
559
560
561
562
563

        #bfluxes = bcal[0].data
        #bwaves = bcal[0].header
        bdata = bcal[1].data
        bfluxes = bdata.field(2)
        bwaves = bcal[1].header
Monica Rainer's avatar
Monica Rainer committed
564

Monica Rainer's avatar
Monica Rainer committed
565
        abcalib = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
566

Monica Rainer's avatar
Monica Rainer committed
567
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
568

Monica Rainer's avatar
Monica Rainer committed
569
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
570
571
572
573
574
575
576
577
578
            bshift = varie.rebin(awaves,bfluxes[o],bwaves,o)
            abcalib[o] = (afluxes[o]+bshift)/2.0
            #snr.append(max(np.mean(abcalib[o][1000:1050])/np.std(abcalib[o][1000:1050]),0))
            with np.errstate(divide='ignore', invalid='ignore'):
                ssnr = (np.sqrt(roneff**2 + (gaineff*2*abcalib[o])))/(gaineff*2*abcalib[o])
                snr[o] = 1.0/(np.sqrt(ssnr**2 + fsnr[o]**2))

        abcalib = np.asarray(abcalib, dtype='float32')

579
580
        #abhea = acal[0].header
        abhea = acal[1].header
Monica Rainer's avatar
Monica Rainer committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        abhea[CONFIG['RON_EFF'][0]] = (roneff,CONFIG['RON_EFF'][1])
        abhea[CONFIG['GAIN_EFF'][0]] = (gaineff,CONFIG['GAIN_EFF'][1])
        #abhea[CONFIG['TEXP_EFF'][0]] = (,CONFIG['TEXP_EFF'][1])
        abhea[CONFIG['KEYS']['SLIT']] = 'AB'
        n = abhea[CONFIG['KEYS']['NCOMBINE']]
        key_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        mjdA = float(abhea[key_mjdA]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        key_mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(int(n/2)),'B'))
        mjdB = float(abhea[key_mjdB]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        mjd = (mjdA+mjdB)/2.0
        abhea[CONFIG['DRS_MJD'][0]] = (mjd,CONFIG['DRS_MJD'][1])

        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
597
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
598
599
600
601
602
603
604
605
606
607
608
609
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            abhea[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])


        heaspe = fits.Header(abhea)

        barycorr, hjd = varie.berv_corr(heaspe)
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])


        try:
610
611
612
613
            #am_a = acal[0].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[0].header[CONFIG['AIRMASS'][0]]
            am_a = acal[1].header[CONFIG['AIRMASS'][0]]
            am_b = bcal[1].header[CONFIG['AIRMASS'][0]]
Monica Rainer's avatar
Monica Rainer committed
614
        except:
615
616
617
618
            #am_a = acal[0].header[CONFIG['KEYS']['AM']]
            #am_b = bcal[0].header[CONFIG['KEYS']['AM']]
            am_a = acal[1].header[CONFIG['KEYS']['AM']]
            am_b = bcal[1].header[CONFIG['KEYS']['AM']]
Monica Rainer's avatar
Monica Rainer committed
619
620
621
622
623
624
625
626
627
628

        am = (am_a+am_b)/2.0

        heaspe[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        try:
            heaspe[CONFIG['AIRMASS'][0]]
        except:
            heaspe[CONFIG['AIRMASS'][0]] = (heaspe[CONFIG['KEYS']['AM']],CONFIG['AIRMASS'][1])

Monica Rainer's avatar
Monica Rainer committed
629

Monica Rainer's avatar
Monica Rainer committed
630
631
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
632
633
            waves[o] = varie.wcalib(heaspe,o)

634
635
636
637
638
639
640
641
        #spefits = fits.PrimaryHDU(abcalib,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])


        #results.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
642

Monica Rainer's avatar
Monica Rainer committed
643

644
645
646
647
648
649
650
651
652
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=abcalib)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)

        tbhdu.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
653
654


Monica Rainer's avatar
Monica Rainer committed
655
656
657
        if CONFIG['S1D']:

            #s1d = varie.create_s1d(abcalib,snr,heaspe)
658
            s1d, startval = varie.create_s1d(abcalib,heaspe)
Monica Rainer's avatar
Monica Rainer committed
659
            heaspe['CRPIX1'] = (1.,'Reference pixel')
660
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
661
662
663
664
665
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

666
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
667
668
669
670

            s1dfits.writeto(abnome1d,clobber=True)


Monica Rainer's avatar
Monica Rainer committed
671
672
673
674
        self.messages.append('Nodding merged AB: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(round(np.mean(snr[41]),2))),)
        self.messages.append('Nodding merged AB: SNR[J band, order=61, wl=1250 nm] = %s' % (str(round(np.mean(snr[29]),2))),)
        self.messages.append('Nodding merged AB: SNR[H band, order=46, wl=1650 nm] = %s' % (str(round(np.mean(snr[14]),2))),)
        self.messages.append('Nodding merged AB: SNR[K band, order=35, wl=2200 nm] = %s' % (str(round(np.mean(snr[3]),2))),)
Monica Rainer's avatar
Monica Rainer committed
675

Monica Rainer's avatar
Monica Rainer committed
676

Monica Rainer's avatar
Monica Rainer committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        #calibrated = np.vstack((np.concatenate(np.flipud(awaves)),np.concatenate(np.flipud(abcalib))))
        #print calibrated

        #extract = abnome.replace('.fits','.txt')
        #ascii.write(np.transpose(calibrated),extract)

        return


    def group_avg(self):
        noddings = []
        headers = []
        am = []
        #print self.group['noddings']
        for n in self.group['noddings']:
            nod = ccdproc.CCDData.read(n, unit=u.adu)
            noddings.append(nod)
            headers.append(nod.header)
            am.append(nod.header[CONFIG['KEYS']['AM']])

        combine_nod = ccdproc.Combiner(noddings)
        nodA = combine_nod.average_combine()
        nodA.data = np.asarray(nodA.data, dtype='float32')

        nodA.header = headers[0]

        ABnome = str(os.path.basename(self.group['noddings'][0])).replace('_AB.fits','_ABgrp.fits')

        nodA.header[CONFIG['KEYS']['FILENAME']] = ABnome
        nodA.header[CONFIG['GAIN_EFF'][0]] = (len(self.group['noddings'])*headers[0][CONFIG['GAIN_EFF'][0]],CONFIG['GAIN_EFF'][1])
        nodA.header[CONFIG['RON_EFF'][0]] = (headers[0][CONFIG['RON_EFF'][0]]*math.sqrt(len(self.group['noddings'])),CONFIG['RON_EFF'][1])

        nodA.header[CONFIG['KEYS']['NCOMBINE']] = len(self.group['noddings'])*2
        for n in xrange(len(self.group['noddings'])):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'A'))
            keyB = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'B'))


            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'A'))
            mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'B'))

            readA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            readB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))

            read_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
            read_mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

            value_keyA = headers[n][readA]
            value_keyB = headers[n][readB]

            value_mjdA = headers[n][read_mjdA]
            value_mjdB = headers[n][read_mjdB]

            nodA.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            nodA.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

            nodA.header[keyB] = (value_keyB,CONFIG['SPEC_USED'][1])
            nodA.header[mjdB] = (value_mjdB,CONFIG['SPEC_MJD'][1])

        am = np.average(np.asarray(am))
        nodA.header[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        heaA = nodA.header
        heaB = nodA.header
        heaA[CONFIG['KEYS']['SLIT']] = CONFIG['A']
        heaA[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
        heaB[CONFIG['KEYS']['SLIT']] = CONFIG['B']
        heaB[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]


        Atmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)
        #nodAfits = nodA.to_hdu()
        hdu = fits.PrimaryHDU(data=nodA.data,header=nodA.header)
        nodAfits = fits.HDUList([hdu])
        nodAfits.writeto(Atmpnome,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
753

Monica Rainer's avatar
Monica Rainer committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        for n in self.group['noddings']:
            os.remove(n)

        return Atmpnome, heaA, heaB


    def pair_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        if self.qualitycheck():
            #t1 = time.time()
            ab, heaA, heaB = self.createAB()
            #t2 = time.time()
            #print 'Bad pixels, create nodding: %s s' %  str(t2-t1)
            acalib, fsnr, straight = self.reduce(ab,CONFIG['A_POS'], heaA)
            bcalib, fsnr, straight = self.reduce(ab,CONFIG['B_POS'], heaB)
            self.combine(acalib,bcalib,fsnr)
            if straight:
                os.remove(ab)
                os.remove(straight)
            acalib = None
            bcalib = None
        self.nodding[:] = []
        self.nodlist[:] = []
        if not self.group['noddings']:
            self.group.clear()
        return

    def group_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.pair_process()
784
785
786
787
788
789
790
791
792
793
794
795
796
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1 :
                ab, heaA, heaB = self.group_avg()
                acalib, fsnr, straight = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight = self.reduce(ab,CONFIG['B_POS'], heaB)
                self.combine(acalib,bcalib,fsnr)
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
797
798
799
800
801
802
803
            self.messages.append('There are no available spectra in this nodding group.')
        self.group.clear()
        return

    def ingroup_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.nodding[:] = []
804
805
806
807
808
809
810
811
812
813
814
815
816
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1:
                ab, heaA, heaB = self.group_avg()
                acalib, fsnr, straight = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight = self.reduce(ab,CONFIG['B_POS'], heaB)
                self.combine(acalib,bcalib,fsnr)
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this incomplete nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
817
818
819
820
821
822
            self.messages.append('There are no available spectra in this incomplete nodding group.')
        self.group.clear()
        return