stare.py 34.5 KB
Newer Older
Monica Rainer's avatar
Monica Rainer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
"""
Reduction of the single Obj-Sky group:
- check the Obj image quality (signal in well defined region)
- check that the exposure times of Obj and Sky are the same
- check that the number of Obj and Sky images are the same
- average the Obj images
- average the Sky images
- create Obj-Sky image
- remove bad pixel using the bad pixel mask
- straigthen the image
- divide by the masterflat (if required)
- perform optimal extraction
- use the optimal profiles with UNe lamp and do wavelength calibration
- save the C image
Reduction of all the Obj-Sky group:
- check the Obj image quality (signal in well defined region)
- check that the exposure times of Obj and Sky are the same
- check that the number of Obj and Sky images are the same
- average the Obj images
- average the Sky images
- create Obj-Sky image
- remove bad pixel using the bad pixel mask
- straigthen the image
- divide by the masterflat (if required)
- perform optimal extraction
- use the optimal profiles with UNe lamp and do wavelength calibration
- save the C image
"""


from drslib.config import CONFIG
from drslib import db, varie
Andrea Bignamini's avatar
Andrea Bignamini committed
33
from drslib import metadata
Monica Rainer's avatar
Monica Rainer committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

from astropy import units as u
from astropy.io import ascii, fits

import warnings
from astropy.utils.exceptions import AstropyWarning
import ccdproc

import numpy as np
import math, os, subprocess, time, shutil

from collections import OrderedDict, Counter
#import matplotlib.pyplot as plt


class GBStare():
Monica Rainer's avatar
Monica Rainer committed
50
    def __init__(self, stare, group, dbconn, dbnight):
Monica Rainer's avatar
Monica Rainer committed
51
52
53
        self.stare = stare
        self.group = group
        self.dbconn = dbconn
Monica Rainer's avatar
Monica Rainer committed
54
        self.dbnight = dbnight
Monica Rainer's avatar
Monica Rainer committed
55
56
57
58
59
60
61
62
63
64
65
        self.quality = []
        self.messages = []
        self.starelist = []
        self.skylist = []
        self.starecorr = {}
        self.mjd = -99999

    def qualitycheck(self):
        """
        Check image's quality: check the signal in a well-defined region (only Obj).
        After this, check the number of Obj and Sky images and their exposure times.
Monica Rainer's avatar
Monica Rainer committed
66
67
        Discard those with exposure times different, (discard other images as needed
        to have the same number of Obj and Sky --> NOT ANYMORE).
Monica Rainer's avatar
Monica Rainer committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        """

        expt_obj = []
        expt_sky = []
        signal_obj = []
        sky_time = []
        mjd_obj = []
        name_obj = []
        name_sky = []

        for frame in self.stare:

            nod = ccdproc.CCDData.read(frame, unit=u.adu)

            try: nod.header[CONFIG['KEYS']['STARE']]
            except:
                nod.header[CONFIG['KEYS']['STARE']] = raw_input('Define stare observation %s: [obj/sky]: ' % (os.path.basename(frame))).upper()
                if nod.header[CONFIG['KEYS']['STARE']] == '':
                    continue

            # check the signal in a well-defined zone
Monica Rainer's avatar
Monica Rainer committed
89
            if nod.header[CONFIG['KEYS']['STARE']].lower() == CONFIG['OBJ'].lower() or nod.header[CONFIG['KEYS']['STARE']].lower() == CONFIG['UNKNOWN'].lower():
Monica Rainer's avatar
Monica Rainer committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
                expt_obj.append(nod.header[CONFIG['KEYS']['EXPTIME']])
                zone = nod.data[CONFIG['SCIENCECHECK'][0]:CONFIG['SCIENCECHECK'][1],CONFIG['SCIENCECHECK'][2]:CONFIG['SCIENCECHECK'][3]]
                mean = np.mean(zone)
                #std = np.std(zone)
                signal_obj.append(mean)

                if mean < CONFIG['NODSIGNAL']:
                    self.messages.append('Science frame %s failed quality check: signal too low (%s). It will not be reduced.' % (str(os.path.basename(frame)),str(mean)))

                else:
                    self.starelist.append(nod)
                    mjd_obj.append(nod.header[CONFIG['KEYS']['MJD']])
                    name_obj.append(os.path.basename(frame))

                    try:
                        nod.header[CONFIG['KEYS']['EXTMODE']]
                    except:
                        nod.header[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTPAIR']

                    ext = nod.header[CONFIG['KEYS']['EXTMODE']]

            else:
                expt_sky.append(nod.header[CONFIG['KEYS']['EXPTIME']])
                sky_time.append(nod.header[CONFIG['KEYS']['MJD']])
                self.skylist.append(nod)
                name_sky.append(os.path.basename(frame))

117
118
        #print name_obj
        #print name_sky
Monica Rainer's avatar
Monica Rainer committed
119

Monica Rainer's avatar
Monica Rainer committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Check if there is at least one Obj image.

        if len(self.starelist) == 0:
            print self.starelist
            self.messages.append('No Obj frame has passed the quality test (signal too low), this group will not be reduced.')
            return False

        #elif len(self.skylist) == 0:
        #    self.messages.append('There are no Sky images, this group will not be reduced.')
        #    return False



# Check exposure times: if they are different, the pipeline
# will only keep the majority of images with the same exposure time

        exp_common = Counter(expt_obj).most_common(1)[0][0]

        if Counter(expt_obj).most_common(1)[0][1] < len(expt_obj):
            #print len(self.starelist)
            self.messages.append('The Obj images have different exposure times, some of them will be skipped')
            for n in xrange(len(self.starelist)):
                if self.starelist[n].data[CONFIG['KEYS']['EXPTIME']] != exp_common:
                    self.messages.append('%s has %ss of exposure time: skipped.' % (name_obj[n],str(self.starelist[n].data[CONFIG['KEYS']['EXPTIME']]),))
                    signal_obj.pop(n)
                    self.starelist.pop(n)
                    mjd_obj.pop(n)
                    name_obj.pop(n)
            #print len(self.starelist)

Monica Rainer's avatar
Monica Rainer committed
150
        self.mjd = np.average(np.asarray(mjd_obj)) + (exp_common/(2.0*86400.0))
Monica Rainer's avatar
Monica Rainer committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        sky_time = abs(np.asarray(sky_time) - self.mjd) 

# Skip sky images with exposure time different than Obj
        #print len(self.skylist)
        try:
            for n in xrange(len(expt_sky)):
                if expt_sky[n] != exp_common:
                    self.messages.append('The sky image %s has %ss of exposure time: skipped.' % (name_sky[n],str(expt_sky[n]),))
                    np.delete(sky_time,n)
                    self.skylist.pop(n)
                    name_sky.pop(n)
        except:
            pass
        #print len(self.skylist)

        #if len(self.skylist) == 0:
        #    self.messages.append('There are no Sky images with the same exposure time as the Obj images, this group will not be reduced.')
        #    return False

# Check if the number of Obj and Sky is the same, otherwise skip some images
# Obj: skip the images with lowest signal: MODIFIED - keep all the obj images, even if the sky images are fewer
#        if len(self.starelist) > len(self.skylist):
#            while len(self.starelist) > len(self.skylist):
#                worst = np.argmin(np.asarray(signal_obj))
#                self.messages.append('There are more Obj images than Sky. %s has the lowest signal: skipped.' % (name_obj[n],))
#                signal_obj.pop(worst)
#                self.starelist.pop(worst)
#                name_obj.pop(worst)

# Sky: skip the images farther temporally from the Obj: MODIFIED - keep all the obj images, even if the sky images are fewer
#        elif len(self.starelist) < len(self.skylist):
#        if len(self.starelist) < len(self.skylist):
#            while len(self.starelist) < len(self.skylist):
#                farther = np.argmax(sky_time)
#                self.messages.append('There are more Sky images than Obj. %s was observed farthest from the Obj sequence: skipped.' % (name_sky[n],))
#                np.delete(sky_time,farther)
#                self.skylist.pop(farther)
#                name_sky.pop(farther)

        if ext == CONFIG['EXTAVG']:
            self.group['stares'].extend(self.stare)

        return True


    def createObj(self,grp):
        """
        Average the Obj and the Sky images, subtract Sky from Obj.
        Bad pixel removal.
        """

        badpix = ccdproc.CCDData.read(CONFIG['BADPIX_MASK'], unit=u.adu)
        bad_mask=badpix.data
        inverse_mask=np.logical_not(bad_mask)

        #t1 = time.time()

        obj = ccdproc.Combiner(self.starelist)
        med_obj = obj.average_combine()
        med_obj.header = self.starelist[0].header
        med_obj.header[CONFIG['GAIN_EFF'][0]] = (len(self.starelist)*CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
        #print med_obj.header[CONFIG['GAIN_EFF'][0]]

        med_obj.header[CONFIG['RON_EFF'][0]] = (math.sqrt(len(self.starelist))*CONFIG['RON'],CONFIG['RON_EFF'][1])

        am = []
        for n in self.starelist:
            am.append(n.header[CONFIG['KEYS']['AM']])
        am = np.average(np.asarray(am))

        med_obj.header[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])


        try:
            sky = ccdproc.Combiner(self.skylist)
            med_sky = sky.average_combine()
            med_sky.header = self.skylist[0].header
            med_sky.header[CONFIG['GAIN_EFF'][0]] = (len(self.skylist)*CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
            med_sky.header[CONFIG['RON_EFF'][0]] = (math.sqrt(len(self.skylist))*CONFIG['RON'],CONFIG['RON_EFF'][1])

            sky_corrected = med_obj.data - med_sky.data
            self.messages.append('Sky subtracted.')

        except:
            exptime = med_obj.header[CONFIG['KEYS']['EXPTIME']]
            darkname = 'dark' + str(int(exptime))
            use_dark = True

            try:
                masterdark = db.extract_dbfile(self.dbconn,darkname)
            except:
                masterdark = False

            if not masterdark:
                self.messages.append('No masterdark found for this night, it will be taken from the calibration database.')
                try:
                    db.copy_dbfile(self.dbconn,darkname)
                    masterdark = db.extract_dbfile(self.dbconn,darkname)
                except:
                    for key in CONFIG['DARKLIST']:
                        try:
                            darkname = 'dark' + str(int(key))
                            db.copy_dbfile(self.dbconn,darkname)
                            masterdark = db.extract_dbfile(self.dbconn,darkname)
                            self.messages.append('No masterdark in the calibration database with the same exposure time as the flat-field. The %s sec masterdark will be used instead' % (str(int(key))))
                            break
                        except:
                            self.messages.append('There are no masterdark in the calibration database. The masterdark will not be used.')
                            use_dark = False

            if use_dark:
                mdark = ccdproc.CCDData.read(masterdark, unit=u.adu)
                sky_corrected = ccdproc.subtract_dark(med_obj,mdark,exposure_time=CONFIG['KEYS']['EXPTIME'],exposure_unit=u.second)
                sky_corrected = sky_corrected.data
265
                mdark_mjd = mdark.header[CONFIG['KEYS']['MJD']]
Monica Rainer's avatar
Monica Rainer committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                self.messages.append('There is no sky image, the masterdark has been subtracted.')
            else:
                sky_corrected = med_obj.data
                self.messages.append('There is no sky image, the object will be reduced anyway.')

        bp_corrected = varie.badpix(sky_corrected,bad_mask,inverse_mask)
        bp_corrected = np.asarray(bp_corrected,dtype='float32')
        self.messages.append('Bad pixel correction done.')

        corrected = ccdproc.CCDData(bp_corrected,unit=u.adu)
        #corrected = ccdproc.CCDData(bp_corrected)
        corrected.header = self.starelist[0].header
        corrected.header[CONFIG['RON_EFF'][0]] = (math.sqrt(2)*med_obj.header[CONFIG['RON_EFF'][0]],CONFIG['RON_EFF'][1])

        corrected.header[CONFIG['DRS_MJD'][0]] = (self.mjd,CONFIG['DRS_MJD'][1])

        corrected.header[CONFIG['KEYS']['NCOMBINE']] = len(self.starelist) + len(self.skylist)
        for n in xrange(len(self.starelist)):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n),'OBJ'))
            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n),'OBJ'))

            #value_keyA = self.starelist[n].header[CONFIG['KEYS']['FILENAME']]
            value_keyA = self.starelist[n].header[CONFIG['KEYS']['IMANAME']]
            value_mjdA = self.starelist[n].header[CONFIG['KEYS']['MJD']]

            corrected.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            corrected.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

        for n in xrange(len(self.skylist)):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n),'SKY'))
            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n),'SKY'))

298
299
300
            #value_keyA = self.skylist[n].header[CONFIG['KEYS']['FILENAME']]
            value_keyA = self.skylist[n].header[CONFIG['KEYS']['IMANAME']]
            value_mjdA = self.skylist[n].header[CONFIG['KEYS']['MJD']]
Monica Rainer's avatar
Monica Rainer committed
301
302
303
304

            corrected.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            corrected.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

305
306
307
308
309
310
311
312
313
314
315
316
317
318
        try:
            if use_dark:
                keyA = ''.join((CONFIG['SPEC_USED'][0],'0','SKY'))
                mjdA = ''.join((CONFIG['SPEC_MJD'][0],'0','SKY'))

                value_keyA = os.path.basename(masterdark)
                value_mjdA = mdark_mjd

                corrected.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
                corrected.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])
        except:
            pass


Monica Rainer's avatar
Monica Rainer committed
319
320
321
322
        #Cnome = self.starelist[0].header[CONFIG['KEYS']['FILENAME']]
        Cnome = self.starelist[0].header[CONFIG['KEYS']['IMANAME']]
        #print Cnome
        #qui = Cnome.rindex('.')
Monica Rainer's avatar
Monica Rainer committed
323
324
325
        #nomebase = os.path.splitext(Cnome)[0]
        nomebase = '_'.join((os.path.splitext(Cnome)[0],corrected.header[CONFIG['KEYS']['SLIT']].strip()))

Monica Rainer's avatar
Monica Rainer committed
326
        if grp:
Monica Rainer's avatar
Monica Rainer committed
327
328
            #Cnome = '_'.join((nomebase,'Cgrp.fits'))
            Cnome = '_'.join((nomebase,'grp.fits'))
Monica Rainer's avatar
Monica Rainer committed
329
        else:
Monica Rainer's avatar
Monica Rainer committed
330
331
            #Cnome = '_'.join((nomebase,'C.fits'))
            Cnome = ''.join((nomebase,'.fits'))
Monica Rainer's avatar
Monica Rainer committed
332
333
334
335
336
337
338
339
340
        Cnome = os.path.join(CONFIG['TMP_DIR'],Cnome)

        #cor_fits = corrected.to_hdu()
        hdu = fits.PrimaryHDU(data=corrected.data,header=corrected.header)
        cor_fits = fits.HDUList([hdu])
        cor_fits.writeto(Cnome,clobber=True)

        return Cnome

Monica Rainer's avatar
Monica Rainer committed
341
    def reduce(self,fitsfile):
Monica Rainer's avatar
Monica Rainer committed
342
343
344
        """
        Straighten, divide by the masterflat, optimal extraction
        """
Monica Rainer's avatar
Monica Rainer committed
345
346

        dbreduced = {}
Monica Rainer's avatar
Monica Rainer committed
347
348
349
        # straighten

        straight = fitsfile.replace('.fits','_str.fits')
350

351
352
353
354
355
        args = [CONFIG['STRAIGHT'],fitsfile,straight]
        args.extend(CONFIG['STRAIGHT_OPT'])
        # search for shift defined in the straighten options in config.py
        dy = True
        for opt in CONFIG['STRAIGHT_OPT']:
356
            try:
357
358
359
360
                dy = opt.rindex('DY=')
                ypos = int(opt[dy-2:])
                shift = CONFIG['SHIFT_Y'] + ypos
                dy = False
361
            except:
362
363
364
                pass

        if dy:
Unknown's avatar
Unknown committed
365
366
367
368
369
            try:
                shift = db.extract_dbfile(self.dbconn,'shiftY')
            except:
                try:
                    cal_flat = db.extract_dbfile(self.dbconn,'flat')
370
371
372
                    mflat = ccdproc.CCDData.read(cal_flat, unit=u.adu)
                    shift = varie.shiftY(mflat.data)
                    db.insert_dbfile(self.dbconn,'shiftY',shift)
Unknown's avatar
Unknown committed
373
                except:
Monica Rainer's avatar
   
Monica Rainer committed
374
375
376
377
378
379
380
381
                    try:
                        db.copy_dbfile(self.dbconn,'shiftY')
                        shift = db.extract_dbfile(self.dbconn,'shiftY')
                    except:
                        shift = CONFIG['SHIFT_Y']
                        self.messages.append('No flat-field or shift value present in the calibration database, no shift will be applied.')
#                    db.copy_dbfile(self.dbconn,'shiftY')
#                    shift = db.extract_dbfile(self.dbconn,'shiftY')
382
383
            if not shift:
                shift = CONFIG['SHIFT_Y']
384

385
386
387
            shiftY = [''.join(('DY=',str(shift - CONFIG['SHIFT_Y'])))]
            #print shiftY
            args.extend(shiftY)
388

Monica Rainer's avatar
Monica Rainer committed
389
        subprocess.call(args)
Andrea Bignamini's avatar
Andrea Bignamini committed
390
391
392
393
394
395
396
397
398
399
400
401
402

        # Read straight file
        imstr = ccdproc.CCDData.read(straight, unit=u.adu)

        # Update FILENAME in header then
        # add metadata to header and save straight file
        imstr.header[CONFIG['KEYS']['FILENAME']] = os.path.basename(straight)
        imstr.header = metadata.add_metadata(imstr.header)

        hdu = fits.PrimaryHDU(data=imstr.data, header=imstr.header)
        str_fits = fits.HDUList([hdu])
        str_fits.writeto(straight, overwrite=True)

Monica Rainer's avatar
Monica Rainer committed
403
404
405
406
407
408
409
410
411
        str_file = os.path.join(CONFIG['RED_STR'],os.path.basename(straight))
        try: shutil.copyfile(straight,str_file)
        except: pass

        self.messages.append('%s: orders straightened.' % str(os.path.basename(fitsfile)),)

        try: nspec = imstr.header[CONFIG['KEYS']['NCOMBINE']]
        except: nspec = 1

Monica Rainer's avatar
Monica Rainer committed
412
413
414
415
416
417
418
419
420
421
422
423
        # search for slit position
        try:
            slit_value = imstr.header[CONFIG['KEYS']['SLIT']]
            if slit_value == CONFIG['A']:
                slit_pos = CONFIG['A_POS']
            elif slit_value == CONFIG['B']:
                slit_pos = CONFIG['B_POS']
            else:
                slit_pos = CONFIG['C_POS']
        except: slit_pos = CONFIG['C_POS']


Monica Rainer's avatar
Monica Rainer committed
424
425
426
427
428
429
430
        # use only the regions of the orders
        try:
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)
        except:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
Monica Rainer's avatar
   
Monica Rainer committed
431
432
433
434
435
436
437
438
439
440
441
442
443
#                masterflat = False
#            if not masterflat:
#                db.copy_dbfile(self.dbconn,'flatstr')
#                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
#                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
                try:
                    db.copy_dbfile(self.dbconn,'flatstr')
                    masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                    self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
                except:
                    self.messages.append('No masterflat found in the calibration database, it is not possible to identify the orders. The spectra will not be reduced.')
                    return

Monica Rainer's avatar
Monica Rainer committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
            mflat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            varie.buildMaskC(mflat.data)
            self.messages.append('The extraction mask was created.')
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)

        gmask = goodmask.data

        roneff = imstr.header[CONFIG['RON_EFF'][0]]
        gaineff = imstr.header[CONFIG['GAIN_EFF'][0]]

        if CONFIG['USE_FLAT']['global']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = np.mean(flat.data)
            norflat = np.true_divide(flat.data,meanflat)
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)

        elif CONFIG['USE_FLAT']['order']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]


        elif CONFIG['USE_FLAT']['nor']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatnor')
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = 1.0
            norflat = flat.data
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)


        try:
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
        except:
Monica Rainer's avatar
   
Monica Rainer committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#            masterlamp = False
#
#        if not masterlamp:
#            db.copy_dbfile(self.dbconn,'une_str')
#            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
#            db.copy_dbfile(self.dbconn,'une_calib')
#            self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))
            try:
                db.copy_dbfile(self.dbconn,'une_str')
                masterlamp = db.extract_dbfile(self.dbconn,'une_str')
                db.copy_dbfile(self.dbconn,'une_calib')
                self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))
            except:
                self.messages.append('No calibration lamp found in the calibration database, the spectra will not be reduced.')
                return
Monica Rainer's avatar
Monica Rainer committed
526
527
528
529
530
531
532
533
534
535
536

        mlamp = ccdproc.CCDData.read(masterlamp, unit=u.adu)

        lroneff = mlamp.header[CONFIG['RON_EFF'][0]]
        lgaineff = mlamp.header[CONFIG['GAIN_EFF'][0]]

        # read the lines to use in the wavelength calibration
        select_lines, all_lines = varie.UNe_linelist()

        # prepare the structure for the calibrated results
        heacal = OrderedDict() # header for the calibration table
Monica Rainer's avatar
Monica Rainer committed
537
538
539
540
        #stdSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        optSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        fsnr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
541

Monica Rainer's avatar
Monica Rainer committed
542
543
        all_cosmics = 0
        for x in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
544

Monica Rainer's avatar
Monica Rainer committed
545
546
            start = x*CONFIG['W_ORD']
            end = min(start+CONFIG['W_ORD'],CONFIG['YCCD'])
Monica Rainer's avatar
Monica Rainer committed
547
548
549
550
551

            # select only the rows wit the signal using the appropriate mask

            omask = gmask[start:end]

Monica Rainer's avatar
Monica Rainer committed
552
553
            #order = imstr.data[start:end]
            order = imflat[start:end]
Monica Rainer's avatar
Monica Rainer committed
554
555
556
557
558
559
560
561
562
563
564
565
566

            if CONFIG['USE_FLAT']['order']:
                ordflat = flat.data[start:end]
                # divide by masterflat normalized by its average value
                meanflat = np.mean(ordflat)
                norflat = np.true_divide(ordflat,meanflat)
                with np.errstate(divide='ignore', invalid='ignore'):
                    order = np.true_divide(order,norflat)

            ordermasked = np.ma.MaskedArray(order,mask=omask)
            goodorder = np.ma.compress_rows(ordermasked)

            # call optimal extraction
Monica Rainer's avatar
Monica Rainer committed
567
568
            optSpectrum[x],varOptFlux,profile,x1,x2,cosmics = varie.optExtract(goodorder,gaineff,roneff,slit_pos,x)
            all_cosmics = all_cosmics + cosmics
Monica Rainer's avatar
Monica Rainer committed
569
570
571
572
573
574
575
576
577
578
579

            olamp = mlamp.data[start:end]
            orderlamp = np.ma.MaskedArray(olamp,mask=omask)
            goodlamp = np.ma.compress_rows(orderlamp)

            extlamp = varie.extract(goodlamp, optSpectrum[x], x1, x2, profile, lgaineff, lroneff)

            if any(CONFIG['USE_FLAT'].values()) is True:
                extflat = varie.extract(norflat, optSpectrum[x], x1, x2, profile, fgaineff, froneff)
                #print extflat
                with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
580
581
                    #fsnr[x] = (np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))))/(fgaineff*(extflat*meanflat))
                    fsnr[x] = np.true_divide(np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))),fgaineff*(extflat*meanflat))
Monica Rainer's avatar
Monica Rainer committed
582
583
584
                    fsnr[fsnr==np.inf] = 0
                    fsnr[fsnr==-np.inf] = 0
                    fsnr = np.nan_to_num(fsnr)
Monica Rainer's avatar
Monica Rainer committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

                osnr = imstr.data[start:end]
                if slit_pos == CONFIG['B_POS']:
                    osnr = -osnr
                ordersnr = np.ma.MaskedArray(osnr,mask=omask)
                goodsnr = np.ma.compress_rows(ordersnr)
                snrSpectrum = varie.extract(goodsnr, optSpectrum[x], x1, x2, profile, gaineff, roneff)


                with np.errstate(divide='ignore', invalid='ignore'):
                    #ssnr = (np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])))/(gaineff*nspec*optSpectrum[x])
                    #ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*nspec*snrSpectrum)),gaineff*nspec*snrSpectrum)
                    ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*snrSpectrum)),gaineff*snrSpectrum)
                    snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))


Monica Rainer's avatar
Monica Rainer committed
601
            else:
Monica Rainer's avatar
Monica Rainer committed
602
603
604
605
606
                #fsnr[x] = np.zeros(len(optSpectrum[x]))
                with np.errstate(divide='ignore', invalid='ignore'):
                    #ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])),gaineff*nspec*optSpectrum[x])
                    ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*optSpectrum[x])),gaineff*optSpectrum[x])
                    snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))
Monica Rainer's avatar
Monica Rainer committed
607

Monica Rainer's avatar
Monica Rainer committed
608
609
610
            #with np.errstate(divide='ignore', invalid='ignore'):
            #    ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])),gaineff*nspec*optSpectrum[x])
            #    snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))
Monica Rainer's avatar
Monica Rainer committed
611
612
613
614
615
616
617


            calib_failed, coeffs, comments = varie.UNe_calibrate(extlamp,x+32,select_lines[x+32],all_lines[x+32])

            for comment in comments:
                self.messages.append(comment)

Monica Rainer's avatar
Monica Rainer committed
618
619
            keyfail = ''.join((CONFIG['CAL_FAILED'][0],str(x+32)))

Monica Rainer's avatar
Monica Rainer committed
620
            if calib_failed:
Monica Rainer's avatar
Monica Rainer committed
621
                heacal[keyfail] = (False,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
622
623
624
625
626
627
628
629
630
                self.messages.append(' *** WARNING ***')
                self.messages.append('The default wavelength calibration for the order %s will be taken from the database and as such it will not be optimal for the night.' % (str(x+32),))
                wcalib = db.extract_dbfile(self.dbconn,'une_calib')
                wlc = ccdproc.CCDData.read(wcalib, unit=u.adu)
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = wlc.header[keyword]

            else:
Monica Rainer's avatar
Monica Rainer committed
631
                heacal[keyfail] = (True,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
632
633
634
635
636
637
638
639
640
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = (coeffs[key],CONFIG['WLCOEFFS'][key][1])


        optSpectrum = np.asarray(optSpectrum, dtype='float32')


        self.messages.append('The spectrum %s was extracted.' % str(os.path.basename(straight)),)
Monica Rainer's avatar
Monica Rainer committed
641
642
643
644
        if all_cosmics == 1050:
            self.messages.append('%s cosmics were removed (maximum iteration reached).' % str(all_cosmics),)
        else:
            self.messages.append('%s cosmics were removed.' % str(all_cosmics),)
Monica Rainer's avatar
Monica Rainer committed
645

Monica Rainer's avatar
Monica Rainer committed
646
        redname = os.path.join(CONFIG['RED_DIR'],str(os.path.basename(fitsfile)))
647
648
649
650
651
652
        sfx = ''.join(('_',CONFIG['MERGED'],'.fits'))
        msfx = ''.join(('_',CONFIG['UNMERGED'],'.fits'))
        calname = redname.replace('.fits',msfx)
        calname1d = redname.replace('.fits',sfx)
        #calname = redname.replace('.fits','_e2ds.fits')
        #calname1d = redname.replace('.fits','_s1d.fits')
Monica Rainer's avatar
Monica Rainer committed
653
654

        heaspe = fits.Header(imstr.header)
655
656
        heaspe[CONFIG['KEYS']['FILENAME']] = str(os.path.basename(calname))
        heaspe[CONFIG['KEYS']['IMANAME']] = str(os.path.basename(calname))
Monica Rainer's avatar
Monica Rainer committed
657

Monica Rainer's avatar
Monica Rainer committed
658
        try:
659
660
661
            heaspe[CONFIG['MASTERFLAT'][0]] = (os.path.basename(masterflat),CONFIG['MASTERFLAT'][1])
        except:
            heaspe[CONFIG['MASTERFLAT'][0]] = ('None',CONFIG['MASTERFLAT'][1])
Monica Rainer's avatar
Monica Rainer committed
662
        try:
663
664
665
            heaspe[CONFIG['MASTERLAMP'][0]] = (os.path.basename(masterlamp),CONFIG['MASTERLAMP'][1])
        except:
            heaspe[CONFIG['MASTERLAMP'][0]] = ('None',CONFIG['MASTERLAMP'][1])
666

Monica Rainer's avatar
Monica Rainer committed
667
668
669
670
        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
671
672
673
674
675
676
677
678
679
680

        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)

        self.messages.append('Stare image: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(snry)),)
        self.messages.append('Stare image: SNR[J band, order=61, wl=1250 nm] = %s' % (str(snrj)),)
        self.messages.append('Stare image: SNR[H band, order=46, wl=1650 nm] = %s' % (str(snrh)),)
        self.messages.append('Stare image: SNR[K band, order=35, wl=2200 nm] = %s' % (str(snrk)),)
Monica Rainer's avatar
Monica Rainer committed
681

Monica Rainer's avatar
Monica Rainer committed
682
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
683
684
685
686
687
688
689
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            heaspe[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])

        heaspe[CONFIG['WLFIT'][0]] = (CONFIG['WLFIT_FUNC'],CONFIG['WLFIT'][1])
        for hea in heacal:
            heaspe[hea] = heacal[hea]

Monica Rainer's avatar
Monica Rainer committed
690
        barycorr, hjd, bjd = varie.berv_corr(heaspe)
Monica Rainer's avatar
Monica Rainer committed
691
692
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])
Monica Rainer's avatar
Monica Rainer committed
693
        heaspe[CONFIG['BJD'][0]] = (bjd,CONFIG['BJD'][1])
Monica Rainer's avatar
Monica Rainer committed
694

Monica Rainer's avatar
Monica Rainer committed
695
696
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
697
698
            waves[o] = varie.wcalib(heaspe,o)

699
700
701
702
703
704
        #spefits = fits.PrimaryHDU(optSpectrum,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')
        #results = fits.HDUList([spefits,wavefits,snrfits])
        #calname = os.path.join(CONFIG['RED_DIR'],calname)
        #results.writeto(calname,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
705

Monica Rainer's avatar
Monica Rainer committed
706

707
708
709
710
711
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=optSpectrum)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)
Monica Rainer's avatar
Monica Rainer committed
712

Monica Rainer's avatar
Monica Rainer committed
713
714
        heaspe[CONFIG['DRS_VERSION'][0]] = (CONFIG['VERSION'], CONFIG['DRS_VERSION'][1])

Andrea Bignamini's avatar
Andrea Bignamini committed
715
716
717
        # Add metadata to header
        heaspe = metadata.add_metadata(heaspe)

718
719
720
721
        #tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4])
        prihdu = fits.PrimaryHDU(data=None, header=heaspe)
        hdulist = fits.HDUList([prihdu, tbhdu])
Monica Rainer's avatar
Monica Rainer committed
722
723

        calname = os.path.join(CONFIG['RED_DIR'],calname)
724
725
        #tbhdu.writeto(calname,clobber=True)
        hdulist.writeto(calname,clobber=True)
726

Monica Rainer's avatar
Monica Rainer committed
727
728
729
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'

Monica Rainer's avatar
Monica Rainer committed
730

Monica Rainer's avatar
Monica Rainer committed
731
        if CONFIG['S1D']:
732
733
            heaspe[CONFIG['KEYS']['FILENAME']] = str(os.path.basename(calname1d))
            heaspe[CONFIG['KEYS']['IMANAME']] = str(os.path.basename(calname1d))
Monica Rainer's avatar
Monica Rainer committed
734
            #s1d = varie.create_s1d(optSpectrum,snr,heaspe)
735
            s1d, startval = varie.create_s1d(optSpectrum,heaspe)
Monica Rainer's avatar
Monica Rainer committed
736
            heaspe['CRPIX1'] = (1.,'Reference pixel')
737
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
738
739
740
741
742
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

Andrea Bignamini's avatar
Andrea Bignamini committed
743
744
745
            # Add metadata to header
            heaspe = metadata.add_metadata(heaspe)

746
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
747
748
            calname1d = os.path.join(CONFIG['RED_DIR'],calname1d)
            s1dfits.writeto(calname1d,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
749
750
751
752
753
754
            rid = varie.random_id(12)

            dbreduced['s1d'] = {'slit':slit_pos, 'path':calname1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':slit_pos, 'path':calname, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
755

Monica Rainer's avatar
Monica Rainer committed
756
757

        if imstr.header[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTPAIR']:
Monica Rainer's avatar
Monica Rainer committed
758
            return calname, straight, dbreduced 
Monica Rainer's avatar
Monica Rainer committed
759
760

        elif 'grp' in fitsfile:
Monica Rainer's avatar
Monica Rainer committed
761
            return calname, straight, dbreduced
Monica Rainer's avatar
Monica Rainer committed
762

Monica Rainer's avatar
Monica Rainer committed
763
        return calname, False, dbreduced
Monica Rainer's avatar
Monica Rainer committed
764
765

    def pair_process(self):
766
        #reduced = ','.join(map(os.path.basename,self.stare))
Monica Rainer's avatar
Monica Rainer committed
767
        stamp = time.time()
768
769
        #db.insert_dbnight(self.dbnight, reduced, stamp)
        db.insert_dbnight(self.dbnight, self.stare, stamp)
Monica Rainer's avatar
Monica Rainer committed
770

Monica Rainer's avatar
Monica Rainer committed
771
772
773
        warnings.simplefilter('ignore', category=AstropyWarning)
        if self.qualitycheck():
            obj = self.createObj(False)
Monica Rainer's avatar
   
Monica Rainer committed
774
775
776
777
778

            try:
                calib, straight, dbreduced = self.reduce(obj)
            except:
                straight = False
Monica Rainer's avatar
Monica Rainer committed
779
780
781
782
783

            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
Monica Rainer's avatar
   
Monica Rainer committed
784
785
786
787
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)
            except:
                pass
Monica Rainer's avatar
Monica Rainer committed
788

Monica Rainer's avatar
Monica Rainer committed
789
790
791
792
793
794
795
            if straight:
                os.remove(obj)
                os.remove(straight)

        #self.stare[:] = []
        self.starelist[:] = []
        self.skylist[:] = []
Monica Rainer's avatar
Monica Rainer committed
796
797
        if not self.group['stares']:
            self.group.clear()
Monica Rainer's avatar
Monica Rainer committed
798
799
800
801
802
803
804
805
806
807

        return

    def group_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.pair_process()
        self.stare = self.group['stares']
        #print self.stare
        if self.qualitycheck():
            obj = self.createObj(True)
Monica Rainer's avatar
Monica Rainer committed
808
            calib, straight, dbreduced = self.reduce(obj)
Monica Rainer's avatar
Monica Rainer committed
809
810
811
812
813
814
815
816
817
818
            if straight:
                os.remove(obj)
                os.remove(straight)
        self.group.clear()

        return

    def ingroup_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.pair_process()
Monica Rainer's avatar
Monica Rainer committed
819
820
821
822
823
824
825
826
827
828
829
        try:
            self.stare = self.group['stares']
            if self.qualitycheck():
                obj = self.createObj(True)
                calib, straight, dbreduced = self.reduce(obj)
                if straight:
                    os.remove(obj)
                    os.remove(straight)
            self.group.clear()
        except:
            pass
Monica Rainer's avatar
Monica Rainer committed
830
831
832
833

        return