nodding.py 42.9 KB
Newer Older
Monica Rainer's avatar
Monica Rainer committed
1
2
3
4
5
6
7
8
9
10
11
12
"""
Reduction of the single AB nodding:
- check the image quality (signal in well defined region)
- check that the exposure times of A and B are the same
- remove bad pixel using the bad pixel mask
- create nodding A-B
- straigthen the nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
Reduction of the nodding group:
Monica Rainer's avatar
   
Monica Rainer committed
13
- average the A-B noddings
Monica Rainer's avatar
Monica Rainer committed
14
15
16
17
18
19
20
21
22
23
- straigthen the average nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
"""


from drslib.config import CONFIG
from drslib import db, varie
Andrea Bignamini's avatar
Andrea Bignamini committed
24
from drslib import metadata
Monica Rainer's avatar
Monica Rainer committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

from astropy import units as u
from astropy.io import ascii, fits

import warnings
from astropy.utils.exceptions import AstropyWarning
import ccdproc

import numpy as np
import math, os, subprocess, time, shutil

from collections import OrderedDict
#import matplotlib.pyplot as plt


class GBNodding():
Monica Rainer's avatar
Monica Rainer committed
41
    def __init__(self, nodding, group, dbconn, dbnight):
Monica Rainer's avatar
Monica Rainer committed
42
43
44
        self.nodding = nodding
        self.group = group
        self.dbconn = dbconn
Monica Rainer's avatar
Monica Rainer committed
45
        self.dbnight = dbnight
Monica Rainer's avatar
Monica Rainer committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.quality = []
        self.messages = []
        self.nodlist = []
        self.nodcorr = {}

    def qualitycheck(self):
        """
        Check image's quality: check the signal in a well-defined region.
        If one of the nodding images fails the check, the other will be discarded too.
        Check that the exposure time of the nodding is the same for the two images.
        """

        expt = []
        for frame in self.nodding:
            #print frame

            nod = ccdproc.CCDData.read(frame, unit=u.adu)
            expt.append(nod.header[CONFIG['KEYS']['EXPTIME']])

            # check the signal in a well-defined zone

            zone = nod.data[CONFIG['SCIENCECHECK'][0]:CONFIG['SCIENCECHECK'][1],CONFIG['SCIENCECHECK'][2]:CONFIG['SCIENCECHECK'][3]]
            mean = np.mean(zone)

            if mean < CONFIG['NODSIGNAL']:
                self.messages.append('Science frame %s failed quality check: signal too low (%s). Neither of the nodding images (%s and %s) will be reduced.' % (str(os.path.basename(frame)),str(mean),str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
                nod = None

                return False

            else:
                self.nodlist.append(nod)

        if expt[0] != expt[1]:
            self.messages.append('The two nodding images %s and %s have different exposure times and they can not be reduced.' % (str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
            return False

        return True


86
    def create_nodcorr(self):
Monica Rainer's avatar
Monica Rainer committed
87
        """
88
        Create nodcorr
Monica Rainer's avatar
Monica Rainer committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        """
        badpix = ccdproc.CCDData.read(CONFIG['BADPIX_MASK'], unit=u.adu)
        bad_mask=badpix.data
        inverse_mask=np.logical_not(bad_mask)

        for nod in self.nodlist:

            # mask the image using the badpix mask
            nod_corrected = varie.badpix(nod.data,bad_mask,inverse_mask)
            self.messages.append('Bad pixel correction done.')

            nod_corr = ccdproc.CCDData(nod_corrected,unit=u.adu)
            nod_corr.header = nod.header

            self.nodcorr[nod.header[CONFIG['KEYS']['SLIT']]] = nod_corr
            nod = None

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        return


    def check_nodcorr(self):
        """
        Check if nodcorr is not corrupted
        """

        try:
            nodA = self.nodcorr[CONFIG['A']]
        except Exception as e:
            nodA = None

        try:
            nodB = self.nodcorr[CONFIG['B']]
        except Exception as e:
            nodB = None

        if not nodA and not nodB:
            self.messages.append('The nodding pair is corrupted. Both slits A and B are missing. Skipping pair processing.')
            return False
        else:
            if not nodA:
                self.messages.append('The nodding pair is corrupted. Slit A is missing. Skipping pair processing.')
                return False
            if not nodB:
                self.messages.append('The nodding pair is corrupted. Slit B is missing. Skipping pair processing.')
                return False

        return True


    def createAB(self):
        """
        Create nodding images A-B and save them in temporary directory if
        the keyword SPEXTMODE is set to GRPAVG_EXT.
        """

        hea = self.nodlist[0].header

Monica Rainer's avatar
Monica Rainer committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        # Create A-B image

        nodA = self.nodcorr[CONFIG['A']]
        nodB = self.nodcorr[CONFIG['B']]
        AB = nodA.data - nodB.data
        nodAB = ccdproc.CCDData(AB, unit=u.adu)
        nodAB.data = np.asarray(nodAB.data, dtype='float32')
        nodAB.header = hea
        heaA = nodA.header
        heaB = nodB.header
        #qui = str(os.path.basename(self.nodding[0])).rindex('.')
        #ABnome = '_'.join((str(os.path.basename(self.nodding[0]))[0:qui], 'AB.fits'))
        nomebase = os.path.splitext(os.path.basename(self.nodding[0]))[0]
        ABnome = '_'.join((nomebase, 'AB.fits'))

        keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
        mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
        mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

        for h in (heaA,heaB,nodAB.header):
            h[CONFIG['GAIN_EFF'][0]] = (CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
            h[CONFIG['RON_EFF'][0]] = (CONFIG['RON']*math.sqrt(2),CONFIG['RON_EFF'][1])
            h[CONFIG['KEYS']['NCOMBINE']] = 2
            h[keyA] = (nodA.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdA] = (nodA.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])
            h[keyB] = (nodB.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdB] = (nodB.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])

        nodAB.header[CONFIG['KEYS']['FILENAME']] = ABnome
176
        nodAB.header[CONFIG['KEYS']['IMANAME']] = ABnome
Monica Rainer's avatar
Monica Rainer committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        ABtmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)


        try:
            nodAB.header[CONFIG['KEYS']['EXTMODE']]
        except:
            nodAB.header[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaA[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaB[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']

        if nodAB.header[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTAVG']:
            self.group['noddings'].append(ABtmpnome)


        hdu = fits.PrimaryHDU(data=nodAB.data,header=nodAB.header)
        nodABfits = fits.HDUList([hdu])
        nodABfits.writeto(ABtmpnome,clobber=True)

        self.messages.append('A-B nodding created.')
        nodA = None
        nodB = None

        return ABtmpnome, heaA, heaB

    def reduce(self,fitsfile,slit_pos,hea):
        """
        Straighten, divide by the masterflat, optimal extraction
        """
Monica Rainer's avatar
Monica Rainer committed
205
        dbreduced = {}
Monica Rainer's avatar
Monica Rainer committed
206
207
208
209
210
211
212
213
214

        if slit_pos == CONFIG['A_POS']:
            slit = 'A'
        else:
            slit = 'B'

        # straighten

        straight = fitsfile.replace('.fits','_str.fits')
215

216
217
218
219
220
        args = [CONFIG['STRAIGHT'],fitsfile,straight]
        args.extend(CONFIG['STRAIGHT_OPT'])
        # search for shift defined in the straighten options in config.py
        dy = True
        for opt in CONFIG['STRAIGHT_OPT']:
221
            try:
222
223
224
225
                dy = opt.rindex('DY=')
                ypos = int(opt[dy-2:])
                shift = CONFIG['SHIFT_Y'] + ypos
                dy = False
226
            except:
227
228
229
                pass

        if dy:
Unknown's avatar
Unknown committed
230
231
232
233
234
            try:
                shift = db.extract_dbfile(self.dbconn,'shiftY')
            except:
                try:
                    cal_flat = db.extract_dbfile(self.dbconn,'flat')
235
236
237
                    mflat = ccdproc.CCDData.read(cal_flat, unit=u.adu)
                    shift = varie.shiftY(mflat.data)
                    db.insert_dbfile(self.dbconn,'shiftY',shift)
Unknown's avatar
Unknown committed
238
                except:
Monica Rainer's avatar
   
Monica Rainer committed
239
240
241
242
243
244
245
                    try:
                        db.copy_dbfile(self.dbconn,'shiftY')
                        shift = db.extract_dbfile(self.dbconn,'shiftY')
                    except:
                        shift = CONFIG['SHIFT_Y']
                        self.messages.append('No flat-field or shift value present in the calibration database, no shift will be applied.')

246
247
            if not shift:
                shift = CONFIG['SHIFT_Y']
248

249
250
251
            shiftY = [''.join(('DY=',str(shift - CONFIG['SHIFT_Y'])))]
            #print shiftY
            args.extend(shiftY)
252

Monica Rainer's avatar
Monica Rainer committed
253
        subprocess.call(args)
254

Andrea Bignamini's avatar
Andrea Bignamini committed
255
256
257
258
259
260
261
262
263
264
265
266
        # Read straight file
        imstr = ccdproc.CCDData.read(straight, unit=u.adu)

        # Update FILENAME in header then
        # add metadata to header and save straight file
        imstr.header[CONFIG['KEYS']['FILENAME']] = os.path.basename(straight)
        imstr.header = metadata.add_metadata(imstr.header)

        hdu = fits.PrimaryHDU(data=imstr.data, header=imstr.header)
        str_fits = fits.HDUList([hdu])
        str_fits.writeto(straight, overwrite=True)

Monica Rainer's avatar
Monica Rainer committed
267
268
269
270
271
272
273
274
275
        str_file = os.path.join(CONFIG['RED_STR'],os.path.basename(straight))
        try: shutil.copyfile(straight,str_file)
        except: pass

        self.messages.append('%s: orders straightened (nodding %s).' % (str(os.path.basename(fitsfile)),slit,))

        hea_ima = hea
        for key in CONFIG['STRAIGHT_PAR']:
            hea_ima[CONFIG['STRAIGHT_PAR'][key]] = imstr.header[CONFIG['STRAIGHT_PAR'][key]]
Monica Rainer's avatar
Monica Rainer committed
276
        imflat = imstr.data.copy()
Monica Rainer's avatar
Monica Rainer committed
277
278
279
280
281
282
283
284
285
286
287
288
289

        # read the number of images averaged to obtain the current image
        # in order to compute the SNR
        try: nspec = hea_ima[CONFIG['KEYS']['NCOMBINE']]
        except: nspec = 1

        # use only the regions of the orders
        try:
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)
        except:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
Monica Rainer's avatar
   
Monica Rainer committed
290
291
292
293
294
295
296
297
298
299
300
301
302
#                masterflat = False
#            if not masterflat:
#                db.copy_dbfile(self.dbconn,'flatstr')
#                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
#                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
                try:
                    db.copy_dbfile(self.dbconn,'flatstr')
                    masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                    self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
                except:
                    self.messages.append('No masterflat found in the calibration database, it is not possible to identify the orders. The spectra will not be reduced.')
                    return

Monica Rainer's avatar
Monica Rainer committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            mflat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            varie.buildMaskC(mflat.data)
            self.messages.append('The extraction mask was created.')
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)

        gmask = goodmask.data


        roneff = hea_ima[CONFIG['RON_EFF'][0]]
        gaineff = hea_ima[CONFIG['GAIN_EFF'][0]]


        if CONFIG['USE_FLAT']['global']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = np.mean(flat.data)
            norflat = np.true_divide(flat.data,meanflat)
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)

        elif CONFIG['USE_FLAT']['order']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]


        elif CONFIG['USE_FLAT']['nor']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatnor')
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = 1.0
            norflat = flat.data
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)


        try:
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
        except:
Monica Rainer's avatar
   
Monica Rainer committed
372
373
374
375
376
377
378
#            masterlamp = False
#
#        if not masterlamp:
#            db.copy_dbfile(self.dbconn,'une_str')
#            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
#            db.copy_dbfile(self.dbconn,'une_calib')
#            self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))
Monica Rainer's avatar
Monica Rainer committed
379

Monica Rainer's avatar
   
Monica Rainer committed
380
381
382
383
384
385
386
387
            try:
                db.copy_dbfile(self.dbconn,'une_str')
                masterlamp = db.extract_dbfile(self.dbconn,'une_str')
                db.copy_dbfile(self.dbconn,'une_calib')
                self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))
            except:
                self.messages.append('No calibration lamp found in the calibration database, the spectra will not be reduced.')
                return
Monica Rainer's avatar
Monica Rainer committed
388
389
390
391
392
393
394
395
396
397
398

        mlamp = ccdproc.CCDData.read(masterlamp, unit=u.adu)

        lroneff = mlamp.header[CONFIG['RON_EFF'][0]]
        lgaineff = mlamp.header[CONFIG['GAIN_EFF'][0]]

        # read the lines to use in the wavelength calibration
        select_lines, all_lines = varie.UNe_linelist()

        # prepare the structure for the calibrated results
        heacal = OrderedDict()
Monica Rainer's avatar
Monica Rainer committed
399
400
        #stdSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        optSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
401
        snrSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
402
403
        fsnr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
404

Monica Rainer's avatar
Monica Rainer committed
405
406
407
408
        all_cosmics = 0
        for x in xrange(CONFIG['N_ORD']):
            start = x*CONFIG['W_ORD']
            end = min(start+CONFIG['W_ORD'],CONFIG['YCCD'])
Monica Rainer's avatar
Monica Rainer committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

            # select only the rows wit the signal using the appropriate mask

            omask = gmask[start:end]

            order = imflat[start:end]
            if slit_pos == CONFIG['B_POS']:
                order = -order

            if CONFIG['USE_FLAT']['order']:
                ordflat = flat.data[start:end]
                # divide by masterflat normalized by its average value
                meanflat = np.mean(ordflat)
                norflat = np.true_divide(ordflat,meanflat)
                with np.errstate(divide='ignore', invalid='ignore'):
                    order = np.true_divide(order,norflat)

            ordermasked = np.ma.MaskedArray(order,mask=omask)
            goodorder = np.ma.compress_rows(ordermasked)

Monica Rainer's avatar
Monica Rainer committed
429
430
            optSpectrum[x],varOptFlux,profile,x1,x2,cosmics = varie.optExtract(goodorder,gaineff,roneff,slit_pos,x)
            all_cosmics = all_cosmics + cosmics
Monica Rainer's avatar
Monica Rainer committed
431
432
433
434
435
436
437
438
439
440
441
442
443

            #snr.append(round(max( (np.mean(optSpectrum[x][1000:1050])/np.std(optSpectrum[x][1000:1050])) ,0),2))
            #optSpectrum[x] = optSpectrum[x][::-1]
            #varOptFlux = varOptFlux[::-1]

            #t3 = time.time()

            olamp = mlamp.data[start:end]
            orderlamp = np.ma.MaskedArray(olamp,mask=omask)
            goodlamp = np.ma.compress_rows(orderlamp)

            extlamp = varie.extract(goodlamp, optSpectrum[x], x1, x2, profile, lgaineff, lroneff)

Monica Rainer's avatar
Monica Rainer committed
444
445
446
447
448
449
450
451
452
            osnr = imstr.data[start:end]
            if slit_pos == CONFIG['B_POS']:
                osnr = -osnr
            ordersnr = np.ma.MaskedArray(osnr,mask=omask)
            goodsnr = np.ma.compress_rows(ordersnr)
            snrSpectrum[x] = varie.extract(goodsnr, optSpectrum[x], x1, x2, profile, gaineff, roneff)



Monica Rainer's avatar
Monica Rainer committed
453
454
455
456
            if any(CONFIG['USE_FLAT'].values()) is True:
                extflat = varie.extract(norflat, optSpectrum[x], x1, x2, profile, fgaineff, froneff)
                #print extflat
                with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
457
458
                    #fsnr[x] = (np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))))/(fgaineff*(extflat*meanflat))
                    fsnr[x] = np.true_divide(np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))),fgaineff*(extflat*meanflat))
Monica Rainer's avatar
Monica Rainer committed
459
460
461
462
                    fsnr[fsnr==np.inf] = 0
                    fsnr[fsnr==-np.inf] = 0
                    fsnr = np.nan_to_num(fsnr)
                #print fsnr
Monica Rainer's avatar
Monica Rainer committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479


                #osnr = imstr.data[start:end]
                #if slit_pos == CONFIG['B_POS']:
                #    osnr = -osnr
                #ordersnr = np.ma.MaskedArray(osnr,mask=omask)
                #goodsnr = np.ma.compress_rows(ordersnr)
                #snrSpectrum[x] = varie.extract(goodsnr, optSpectrum[x], x1, x2, profile, gaineff, roneff)



                with np.errstate(divide='ignore', invalid='ignore'):
                    #ssnr = (np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])))/(gaineff*nspec*optSpectrum[x])
                    ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*snrSpectrum[x])),gaineff*snrSpectrum[x])
                    #ssnr = np.true_divide(np.sqrt(np.abs(x2-x1)*roneff**2 + (gaineff*snrSpectrum[x])),gaineff*snrSpectrum[x])
                    snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))

Monica Rainer's avatar
Monica Rainer committed
480
481
482
            else:
                fsnr[x] = np.zeros(len(optSpectrum[x]))

Monica Rainer's avatar
Monica Rainer committed
483
484
485
486
                with np.errstate(divide='ignore', invalid='ignore'):
                    #ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])),gaineff*nspec*optSpectrum[x])
                    ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*snrSpectrum[x])) , gaineff*snrSpectrum[x])
                    snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))
Monica Rainer's avatar
Monica Rainer committed
487
488
489
490
491
492

            calib_failed, coeffs, comments = varie.UNe_calibrate(extlamp,x+32,select_lines[x+32],all_lines[x+32])

            for comment in comments:
                self.messages.append(comment)

Monica Rainer's avatar
Monica Rainer committed
493
            keyfail = ''.join((CONFIG['CAL_FAILED'][0],str(x+32)))
Monica Rainer's avatar
Monica Rainer committed
494
495

            if calib_failed:
Monica Rainer's avatar
Monica Rainer committed
496
                heacal[keyfail] = (False,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
497
498
499
500
501
502
503
504
505
                self.messages.append(' *** WARNING ***')
                self.messages.append('The default wavelength calibration for the order %s will be taken from the database and as such it will not be optimal for the night.' % (str(x+32),))
                wcalib = db.extract_dbfile(self.dbconn,'une_calib')
                wlc = ccdproc.CCDData.read(wcalib, unit=u.adu)
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = wlc.header[keyword]

            else:
Monica Rainer's avatar
Monica Rainer committed
506
                heacal[keyfail] = (True,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
507
508
509
510
511
512
513
514
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = (coeffs[key],CONFIG['WLCOEFFS'][key][1])


        optSpectrum = np.asarray(optSpectrum, dtype='float32')

        self.messages.append('The nodding %s was extracted.' % str(slit),)
Monica Rainer's avatar
Monica Rainer committed
515
516
517
518
519
        if all_cosmics == 1050:
            self.messages.append('%s cosmics were removed (maximum iteration reached).' % str(all_cosmics),)
        else:
            self.messages.append('%s cosmics were removed.' % str(all_cosmics),)

Monica Rainer's avatar
Monica Rainer committed
520
521
522
523
524
525
526

        if slit_pos == CONFIG['A_POS']:
            keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            aname = hea_ima[keyA]
            nomebase = os.path.splitext(aname)[0]
            #qui = aname.rindex('.')
            if 'grp' in fitsfile:
527
528
529
530
                msfx = ''.join(('Agrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Agrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
531
            else:
532
533
534
535
536
537
538
                msfx = ''.join(('A_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('A_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'A_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'A_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
539
540
541
542
543
544
545
546

            #calname = str(os.path.basename(fitsfile)).replace('_AB','_A')
        elif slit_pos == CONFIG['B_POS']:
            keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
            bname = hea_ima[keyB]
            nomebase = os.path.splitext(bname)[0]
            #qui = bname.rindex('.')
            if 'grp' in fitsfile:
547
548
549
550
                msfx = ''.join(('Bgrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Bgrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
551
            else:
552
553
554
555
556
557
558
                msfx = ''.join(('B_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('B_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'B_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'B_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
559
560
561
562
563
564
565
            #calname = str(os.path.basename(fitsfile)).replace('_AB','_B')
        else: 
            print 'Wrong slit position!'


        heaspe = fits.Header(hea_ima)
        heaspe[CONFIG['KEYS']['FILENAME']] = calname
566
        heaspe[CONFIG['KEYS']['IMANAME']] = calname
Monica Rainer's avatar
Monica Rainer committed
567
        drs_mjd = float(heaspe[CONFIG['KEYS']['MJD']]) + (float(heaspe[CONFIG['KEYS']['EXPTIME']])/(2.0*86400.0))
Monica Rainer's avatar
Monica Rainer committed
568
569
        heaspe[CONFIG['DRS_MJD'][0]] = (drs_mjd,CONFIG['DRS_MJD'][1])

Monica Rainer's avatar
Monica Rainer committed
570
        try:
571
572
573
            heaspe[CONFIG['MASTERFLAT'][0]] = (os.path.basename(masterflat),CONFIG['MASTERFLAT'][1])
        except:
            heaspe[CONFIG['MASTERFLAT'][0]] = ('None',CONFIG['MASTERFLAT'][1])
Monica Rainer's avatar
Monica Rainer committed
574
        try:
575
576
577
            heaspe[CONFIG['MASTERLAMP'][0]] = (os.path.basename(masterlamp),CONFIG['MASTERLAMP'][1])
        except:
            heaspe[CONFIG['MASTERLAMP'][0]] = ('None',CONFIG['MASTERLAMP'][1])
578

Monica Rainer's avatar
Monica Rainer committed
579
580
581
582
        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
583
584
585
586
587
588
589
590
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(slit),str(snry),))
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % (str(slit),str(snrj),))
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % (str(slit),str(snrh),))
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % (str(slit),str(snrk),))
Monica Rainer's avatar
Monica Rainer committed
591

Monica Rainer's avatar
Monica Rainer committed
592

Monica Rainer's avatar
Monica Rainer committed
593
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
594
595
596
597
598
599
600
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            heaspe[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])

        heaspe[CONFIG['WLFIT'][0]] = (CONFIG['WLFIT_FUNC'],CONFIG['WLFIT'][1])
        for hea in heacal:
            heaspe[hea] = heacal[hea]

Monica Rainer's avatar
Monica Rainer committed
601
        barycorr, hjd, bjd = varie.berv_corr(heaspe)
Monica Rainer's avatar
Monica Rainer committed
602
603
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])
Monica Rainer's avatar
Monica Rainer committed
604
        heaspe[CONFIG['BJD'][0]] = (bjd,CONFIG['BJD'][1])
Monica Rainer's avatar
Monica Rainer committed
605

Monica Rainer's avatar
Monica Rainer committed
606
607
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
608
609
            waves[o] = varie.wcalib(heaspe,o)

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        #spefits = fits.PrimaryHDU(optSpectrum,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])

        #calname = os.path.join(CONFIG['RED_DIR'],calname)
        #results.writeto(calname,clobber=True)

        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=optSpectrum)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

Monica Rainer's avatar
Monica Rainer committed
625
626
        heaspe[CONFIG['DRS_VERSION'][0]] = (CONFIG['VERSION'], CONFIG['DRS_VERSION'][1])

Andrea Bignamini's avatar
Andrea Bignamini committed
627
628
629
        # Add metadata to header
        heaspe = metadata.add_metadata(heaspe)

630
631
632
633
        #tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4])
        prihdu = fits.PrimaryHDU(data=None, header=heaspe)
        hdulist = fits.HDUList([prihdu, tbhdu])
Monica Rainer's avatar
Monica Rainer committed
634
635

        calname = os.path.join(CONFIG['RED_DIR'],calname)
636
637
        #tbhdu.writeto(calname,clobber=True)
        hdulist.writeto(calname,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
638

Monica Rainer's avatar
Monica Rainer committed
639
640
641
642
        #t1 = time.time()

        #print 's1d'
        #print calname1d
Monica Rainer's avatar
Monica Rainer committed
643
644
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'
Monica Rainer's avatar
Monica Rainer committed
645
646
647

        if CONFIG['S1D']:
            #s1d = varie.create_s1d(optSpectrum,snr,heaspe)
648
            s1d, startval = varie.create_s1d(optSpectrum,heaspe)
Monica Rainer's avatar
Monica Rainer committed
649
            heaspe[CONFIG['KEYS']['FILENAME']] = calname1d
650
            heaspe[CONFIG['KEYS']['IMANAME']] = calname1d
Monica Rainer's avatar
Monica Rainer committed
651
            heaspe['CRPIX1'] = (1.,'Reference pixel')
652
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
653
654
655
656
657
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

Andrea Bignamini's avatar
Andrea Bignamini committed
658
659
660
            # Add metadata to header
            heaspe = metadata.add_metadata(heaspe)

661
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
662
663
664
            calname1d = os.path.join(CONFIG['RED_DIR'],calname1d)
            s1dfits.writeto(calname1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
665
666
667
668
669
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':slit, 'path':calname1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':slit, 'path':calname, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
670
671
        #t2 = time.time()
        #print 's1d spectrum: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
672
673

        if hea_ima[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTPAIR']:
Monica Rainer's avatar
Monica Rainer committed
674
            return calname, fsnr, straight, dbreduced, snrSpectrum
Monica Rainer's avatar
Monica Rainer committed
675
676

        elif 'grp' in fitsfile:
Monica Rainer's avatar
Monica Rainer committed
677
            return calname, fsnr, straight, dbreduced, snrSpectrum
Monica Rainer's avatar
Monica Rainer committed
678

Monica Rainer's avatar
Monica Rainer committed
679
        return calname, fsnr, False, dbreduced, snrSpectrum
Monica Rainer's avatar
Monica Rainer committed
680
681


Monica Rainer's avatar
Monica Rainer committed
682
    def combine(self,acalib,bcalib,fsnr, asnrSpec, bsnrSpec):
Monica Rainer's avatar
Monica Rainer committed
683

Monica Rainer's avatar
Monica Rainer committed
684
685
        dbreduced = {}

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        #abnome = acalib.replace('_A_e2ds.fits','_AB_e2ds.fits')
        #abnome1d = acalib.replace('_A_e2ds.fits','_AB_s1d.fits')
        #abnome = abnome.replace('_Agrp_e2ds.fits','_ABgrp_e2ds.fits')
        #abnome1d = abnome1d.replace('_Agrp_e2ds.fits','_ABgrp_s1d.fits')

        old = ''.join(('_A_',CONFIG['UNMERGED'],'.fits'))
        oldgrp = ''.join(('_Agrp_',CONFIG['UNMERGED'],'.fits'))
        sfx = ''.join(('_AB_',CONFIG['MERGED'],'.fits'))
        msfx = ''.join(('_AB_',CONFIG['UNMERGED'],'.fits'))
        grp = ''.join(('_ABgrp_',CONFIG['MERGED'],'.fits'))
        mgrp = ''.join(('_ABgrp_',CONFIG['UNMERGED'],'.fits'))

        abnome = acalib.replace(old,msfx)
        abnome1d = acalib.replace(old,sfx)
        abnome = abnome.replace(oldgrp,mgrp)
        abnome1d = abnome1d.replace(oldgrp,grp)

Monica Rainer's avatar
Monica Rainer committed
703
704
        #print abnome
        #print abnome1d
Monica Rainer's avatar
Monica Rainer committed
705
706

        acal = fits.open(acalib)
707
708
709

        adata = acal[1].data
        afluxes = adata.field(2)
710
711
712
713
714
715
716

        #awaves = acal[1].header
        abhea = acal[0].header
        #roneff = math.sqrt(2)*acal[1].header[CONFIG['RON_EFF'][0]]
        #gaineff = 2*acal[1].header[CONFIG['GAIN_EFF'][0]]
        roneff = math.sqrt(2)*abhea[CONFIG['RON_EFF'][0]]
        gaineff = 2*abhea[CONFIG['GAIN_EFF'][0]]
717

Monica Rainer's avatar
Monica Rainer committed
718
        bcal = fits.open(bcalib)
719
720
721
722
723

        #bfluxes = bcal[0].data
        #bwaves = bcal[0].header
        bdata = bcal[1].data
        bfluxes = bdata.field(2)
724
725
        #bwaves = bcal[1].header
        bwaves = bcal[0].header
Monica Rainer's avatar
Monica Rainer committed
726

Monica Rainer's avatar
Monica Rainer committed
727
        abcalib = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
728

Monica Rainer's avatar
Monica Rainer committed
729
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
730

Monica Rainer's avatar
Monica Rainer committed
731
        for o in xrange(CONFIG['N_ORD']):
732
733
            #bshift = varie.rebin(awaves,bfluxes[o],bwaves,o)
            bshift = varie.rebin(abhea,bfluxes[o],bwaves,o)
Monica Rainer's avatar
Monica Rainer committed
734
            abcalib[o] = (afluxes[o]+bshift)/2.0
Monica Rainer's avatar
Monica Rainer committed
735
736
737

            bsnr = varie.rebin(abhea,bsnrSpec[o],bwaves,o)
            absnr = (asnrSpec[o]+bsnr)/2.0
Monica Rainer's avatar
Monica Rainer committed
738
739
            #snr.append(max(np.mean(abcalib[o][1000:1050])/np.std(abcalib[o][1000:1050]),0))
            with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
740
                #ssnr = (np.sqrt(roneff**2 + (gaineff*2*abcalib[o])))/(gaineff*2*abcalib[o])
Monica Rainer's avatar
Monica Rainer committed
741
742
743
                #ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*2*abcalib[o])),gaineff*2*abcalib[o])
                #ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*abcalib[o])),gaineff*abcalib[o])
                ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*absnr)),gaineff*absnr)
Monica Rainer's avatar
Monica Rainer committed
744
745
746
747
                snr[o] = 1.0/(np.sqrt(ssnr**2 + fsnr[o]**2))

        abcalib = np.asarray(abcalib, dtype='float32')

748
        #abhea = acal[0].header
749
        #abhea = acal[1].header
Monica Rainer's avatar
Monica Rainer committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        abhea[CONFIG['RON_EFF'][0]] = (roneff,CONFIG['RON_EFF'][1])
        abhea[CONFIG['GAIN_EFF'][0]] = (gaineff,CONFIG['GAIN_EFF'][1])
        #abhea[CONFIG['TEXP_EFF'][0]] = (,CONFIG['TEXP_EFF'][1])
        abhea[CONFIG['KEYS']['SLIT']] = 'AB'
        n = abhea[CONFIG['KEYS']['NCOMBINE']]
        key_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        mjdA = float(abhea[key_mjdA]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        key_mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(int(n/2)),'B'))
        mjdB = float(abhea[key_mjdB]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        mjd = (mjdA+mjdB)/2.0
        abhea[CONFIG['DRS_MJD'][0]] = (mjd,CONFIG['DRS_MJD'][1])

        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
766
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
767
768
769
770
771
772
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            abhea[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])


        heaspe = fits.Header(abhea)

773
774
775
        heaspe[CONFIG['KEYS']['FILENAME']] = os.path.basename(abnome)
        heaspe[CONFIG['KEYS']['IMANAME']] = os.path.basename(abnome)

Monica Rainer's avatar
Monica Rainer committed
776
        barycorr, hjd, bjd = varie.berv_corr(heaspe)
Monica Rainer's avatar
Monica Rainer committed
777
778
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])
Monica Rainer's avatar
Monica Rainer committed
779
        heaspe[CONFIG['BJD'][0]] = (bjd,CONFIG['BJD'][1])
Monica Rainer's avatar
Monica Rainer committed
780
781
782


        try:
783
784
            #am_a = acal[0].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[0].header[CONFIG['AIRMASS'][0]]
785
786
787
788
            #am_a = acal[1].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[1].header[CONFIG['AIRMASS'][0]]
            am_a = abhea[CONFIG['AIRMASS'][0]]
            am_b = bwaves[CONFIG['AIRMASS'][0]]
Monica Rainer's avatar
Monica Rainer committed
789
        except:
790
791
            #am_a = acal[0].header[CONFIG['KEYS']['AM']]
            #am_b = bcal[0].header[CONFIG['KEYS']['AM']]
792
793
            am_a = abhea[CONFIG['KEYS']['AM']]
            am_b = bwaves[CONFIG['KEYS']['AM']]
Monica Rainer's avatar
Monica Rainer committed
794
795
796
797
798
799
800
801
802
803

        am = (am_a+am_b)/2.0

        heaspe[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        try:
            heaspe[CONFIG['AIRMASS'][0]]
        except:
            heaspe[CONFIG['AIRMASS'][0]] = (heaspe[CONFIG['KEYS']['AM']],CONFIG['AIRMASS'][1])

Monica Rainer's avatar
Monica Rainer committed
804

Monica Rainer's avatar
Monica Rainer committed
805
806
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
807
808
            waves[o] = varie.wcalib(heaspe,o)

809
810
811
812
813
814
815
816
        #spefits = fits.PrimaryHDU(abcalib,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])


        #results.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
817

Monica Rainer's avatar
Monica Rainer committed
818
819
820
821
822
823
824
825
826
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % ('AB',str(snry)),)
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % ('AB',str(snrj)),)
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % ('AB',str(snrh)),)
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % ('AB',str(snrk)),)

Monica Rainer's avatar
Monica Rainer committed
827

828
829
830
831
832
833
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=abcalib)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

Monica Rainer's avatar
Monica Rainer committed
834
835
        heaspe[CONFIG['DRS_VERSION'][0]] = (CONFIG['VERSION'], CONFIG['DRS_VERSION'][1])

Andrea Bignamini's avatar
Andrea Bignamini committed
836
837
838
        # Add metadata to header
        heaspe = metadata.add_metadata(heaspe)

839
840
841
842
        #tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4])
        prihdu = fits.PrimaryHDU(data=None, header=heaspe)
        hdulist = fits.HDUList([prihdu, tbhdu])
843

844
845
        #tbhdu.writeto(abnome,clobber=True)
        hdulist.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
846
847


Monica Rainer's avatar
Monica Rainer committed
848
849
850
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'

Monica Rainer's avatar
Monica Rainer committed
851
        if CONFIG['S1D']:
852
853
            heaspe[CONFIG['KEYS']['FILENAME']] = os.path.basename(abnome1d)
            heaspe[CONFIG['KEYS']['IMANAME']] = os.path.basename(abnome1d)
Monica Rainer's avatar
Monica Rainer committed
854
            #s1d = varie.create_s1d(abcalib,snr,heaspe)
855
            s1d, startval = varie.create_s1d(abcalib,heaspe)
Monica Rainer's avatar
Monica Rainer committed
856
            heaspe['CRPIX1'] = (1.,'Reference pixel')
857
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
858
859
860
861
862
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

Andrea Bignamini's avatar
Andrea Bignamini committed
863
864
865
            # Add metadata to header
            heaspe = metadata.add_metadata(heaspe)

866
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
867
868
869

            s1dfits.writeto(abnome1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
870
871
872
873
874
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':'AB', 'path':abnome1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':'AB', 'path':abnome, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
875

Monica Rainer's avatar
Monica Rainer committed
876

Monica Rainer's avatar
Monica Rainer committed
877

Monica Rainer's avatar
Monica Rainer committed
878
879
880
881
882
883
        #calibrated = np.vstack((np.concatenate(np.flipud(awaves)),np.concatenate(np.flipud(abcalib))))
        #print calibrated

        #extract = abnome.replace('.fits','.txt')
        #ascii.write(np.transpose(calibrated),extract)

Monica Rainer's avatar
Monica Rainer committed
884
        return dbreduced
Monica Rainer's avatar
Monica Rainer committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906


    def group_avg(self):
        noddings = []
        headers = []
        am = []
        #print self.group['noddings']
        for n in self.group['noddings']:
            nod = ccdproc.CCDData.read(n, unit=u.adu)
            noddings.append(nod)
            headers.append(nod.header)
            am.append(nod.header[CONFIG['KEYS']['AM']])

        combine_nod = ccdproc.Combiner(noddings)
        nodA = combine_nod.average_combine()
        nodA.data = np.asarray(nodA.data, dtype='float32')

        nodA.header = headers[0]

        ABnome = str(os.path.basename(self.group['noddings'][0])).replace('_AB.fits','_ABgrp.fits')

        nodA.header[CONFIG['KEYS']['FILENAME']] = ABnome
907
        nodA.header[CONFIG['KEYS']['IMANAME']] = ABnome
Monica Rainer's avatar
Monica Rainer committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
        nodA.header[CONFIG['GAIN_EFF'][0]] = (len(self.group['noddings'])*headers[0][CONFIG['GAIN_EFF'][0]],CONFIG['GAIN_EFF'][1])
        nodA.header[CONFIG['RON_EFF'][0]] = (headers[0][CONFIG['RON_EFF'][0]]*math.sqrt(len(self.group['noddings'])),CONFIG['RON_EFF'][1])

        nodA.header[CONFIG['KEYS']['NCOMBINE']] = len(self.group['noddings'])*2
        for n in xrange(len(self.group['noddings'])):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'A'))
            keyB = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'B'))


            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'A'))
            mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'B'))

            readA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            readB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))

            read_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
            read_mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

            value_keyA = headers[n][readA]
            value_keyB = headers[n][readB]

            value_mjdA = headers[n][read_mjdA]
            value_mjdB = headers[n][read_mjdB]

            nodA.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            nodA.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

            nodA.header[keyB] = (value_keyB,CONFIG['SPEC_USED'][1])
            nodA.header[mjdB] = (value_mjdB,CONFIG['SPEC_MJD'][1])

        am = np.average(np.asarray(am))
        nodA.header[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        heaA = nodA.header
        heaB = nodA.header
        heaA[CONFIG['KEYS']['SLIT']] = CONFIG['A']
        heaA[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
945
        heaA[CONFIG['KEYS']['IMANAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
Monica Rainer's avatar
Monica Rainer committed
946
947
        heaB[CONFIG['KEYS']['SLIT']] = CONFIG['B']
        heaB[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]
948
        heaB[CONFIG['KEYS']['IMANAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]
Monica Rainer's avatar
Monica Rainer committed
949
950
951
952
953
954
955
956


        Atmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)
        #nodAfits = nodA.to_hdu()
        hdu = fits.PrimaryHDU(data=nodA.data,header=nodA.header)
        nodAfits = fits.HDUList([hdu])
        nodAfits.writeto(Atmpnome,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
957

Monica Rainer's avatar
Monica Rainer committed
958
959
960
961
962
963
964
        for n in self.group['noddings']:
            os.remove(n)

        return Atmpnome, heaA, heaB


    def pair_process(self):
965
        #reduced = ','.join(map(os.path.basename,self.nodding))
Monica Rainer's avatar
Monica Rainer committed
966
        stamp = time.time()
967
968
        #db.insert_dbnight(self.dbnight, reduced, stamp)
        db.insert_dbnight(self.dbnight, self.nodding, stamp)
Monica Rainer's avatar
Monica Rainer committed
969

Monica Rainer's avatar
Monica Rainer committed
970
971
972
        warnings.simplefilter('ignore', category=AstropyWarning)
        if self.qualitycheck():
            #t1 = time.time()
973
974
975
976
            # Create and check nodcorr
            self.create_nodcorr()
            if not self.check_nodcorr():
                return
Monica Rainer's avatar
Monica Rainer committed
977
978
979
            ab, heaA, heaB = self.createAB()
            #t2 = time.time()
            #print 'Bad pixels, create nodding: %s s' %  str(t2-t1)
Monica Rainer's avatar
   
Monica Rainer committed
980
981

            try:
Monica Rainer's avatar
Monica Rainer committed
982
                acalib, fsnr, straight, dbreduced, asnrSpec = self.reduce(ab,CONFIG['A_POS'], heaA)
Monica Rainer's avatar
   
Monica Rainer committed
983
984
            except:
                straight = False
Monica Rainer's avatar
Monica Rainer committed
985
986
987
988
989
990

            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass

Monica Rainer's avatar
   
Monica Rainer committed
991
992
993
994
995
996
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)
            except:
                pass

            try:
Monica Rainer's avatar
Monica Rainer committed
997
                bcalib, fsnr, straight, dbreduced, bsnrSpec = self.reduce(ab,CONFIG['B_POS'], heaB)
Monica Rainer's avatar
   
Monica Rainer committed
998
999
1000
            except:
                straight = False

For faster browsing, not all history is shown. View entire blame