nodding.py 34.7 KB
Newer Older
Monica Rainer's avatar
Monica Rainer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Reduction of the single AB nodding:
- check the image quality (signal in well defined region)
- check that the exposure times of A and B are the same
- remove bad pixel using the bad pixel mask
- create nodding A-B
- straigthen the nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
Reduction of the nodding group:
- average the A noddings
- average the B noddings
- create average nodding A-B
- straigthen the average nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
"""


from drslib.config import CONFIG
from drslib import db, varie

from astropy import units as u
from astropy.io import ascii, fits

import warnings
from astropy.utils.exceptions import AstropyWarning
import ccdproc

import numpy as np
import math, os, subprocess, time, shutil

from collections import OrderedDict
#import matplotlib.pyplot as plt


class GBNodding():
Monica Rainer's avatar
Monica Rainer committed
42
    def __init__(self, nodding, group, dbconn, dbnight):
Monica Rainer's avatar
Monica Rainer committed
43
44
45
        self.nodding = nodding
        self.group = group
        self.dbconn = dbconn
Monica Rainer's avatar
Monica Rainer committed
46
        self.dbnight = dbnight
Monica Rainer's avatar
Monica Rainer committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        self.quality = []
        self.messages = []
        self.nodlist = []
        self.nodcorr = {}

    def qualitycheck(self):
        """
        Check image's quality: check the signal in a well-defined region.
        If one of the nodding images fails the check, the other will be discarded too.
        Check that the exposure time of the nodding is the same for the two images.
        """

        expt = []
        for frame in self.nodding:
            #print frame

            nod = ccdproc.CCDData.read(frame, unit=u.adu)
            expt.append(nod.header[CONFIG['KEYS']['EXPTIME']])

            # check the signal in a well-defined zone

            zone = nod.data[CONFIG['SCIENCECHECK'][0]:CONFIG['SCIENCECHECK'][1],CONFIG['SCIENCECHECK'][2]:CONFIG['SCIENCECHECK'][3]]
            mean = np.mean(zone)

            if mean < CONFIG['NODSIGNAL']:
                self.messages.append('Science frame %s failed quality check: signal too low (%s). Neither of the nodding images (%s and %s) will be reduced.' % (str(os.path.basename(frame)),str(mean),str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
                nod = None

                return False

            else:
                self.nodlist.append(nod)

        if expt[0] != expt[1]:
            self.messages.append('The two nodding images %s and %s have different exposure times and they can not be reduced.' % (str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
            return False

        return True


    def createAB(self):
        """
        Create nodding images A-B and save them in temporary directory if
        the keyword SPEXTMODE is set to GRPAVG_EXT.
        """

        hea = self.nodlist[0].header

        badpix = ccdproc.CCDData.read(CONFIG['BADPIX_MASK'], unit=u.adu)
        bad_mask=badpix.data
        inverse_mask=np.logical_not(bad_mask)

        for nod in self.nodlist:

            # mask the image using the badpix mask
            nod_corrected = varie.badpix(nod.data,bad_mask,inverse_mask)
            self.messages.append('Bad pixel correction done.')

            nod_corr = ccdproc.CCDData(nod_corrected,unit=u.adu)
            nod_corr.header = nod.header

            self.nodcorr[nod.header[CONFIG['KEYS']['SLIT']]] = nod_corr
            nod = None

        # Create A-B image

        nodA = self.nodcorr[CONFIG['A']]
        nodB = self.nodcorr[CONFIG['B']]
        AB = nodA.data - nodB.data
        nodAB = ccdproc.CCDData(AB, unit=u.adu)
        nodAB.data = np.asarray(nodAB.data, dtype='float32')
        nodAB.header = hea
        heaA = nodA.header
        heaB = nodB.header
        #qui = str(os.path.basename(self.nodding[0])).rindex('.')
        #ABnome = '_'.join((str(os.path.basename(self.nodding[0]))[0:qui], 'AB.fits'))
        nomebase = os.path.splitext(os.path.basename(self.nodding[0]))[0]
        ABnome = '_'.join((nomebase, 'AB.fits'))

        keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
        mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
        mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

        for h in (heaA,heaB,nodAB.header):
            h[CONFIG['GAIN_EFF'][0]] = (CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
            h[CONFIG['RON_EFF'][0]] = (CONFIG['RON']*math.sqrt(2),CONFIG['RON_EFF'][1])
            h[CONFIG['KEYS']['NCOMBINE']] = 2
            h[keyA] = (nodA.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdA] = (nodA.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])
            h[keyB] = (nodB.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdB] = (nodB.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])

        nodAB.header[CONFIG['KEYS']['FILENAME']] = ABnome
        #nodAB.header[CONFIG['KEYS']['IMANAME']] = ABnome
        ABtmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)


        try:
            nodAB.header[CONFIG['KEYS']['EXTMODE']]
        except:
            nodAB.header[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaA[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaB[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']

        if nodAB.header[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTAVG']:
            self.group['noddings'].append(ABtmpnome)


        hdu = fits.PrimaryHDU(data=nodAB.data,header=nodAB.header)
        nodABfits = fits.HDUList([hdu])
        nodABfits.writeto(ABtmpnome,clobber=True)

        self.messages.append('A-B nodding created.')
        nodA = None
        nodB = None

        return ABtmpnome, heaA, heaB

    def reduce(self,fitsfile,slit_pos,hea):
        """
        Straighten, divide by the masterflat, optimal extraction
        """
Monica Rainer's avatar
Monica Rainer committed
170
        dbreduced = {}
Monica Rainer's avatar
Monica Rainer committed
171
172
173
174
175
176
177
178
179

        if slit_pos == CONFIG['A_POS']:
            slit = 'A'
        else:
            slit = 'B'

        # straighten

        straight = fitsfile.replace('.fits','_str.fits')
180
181
182
        #args = [CONFIG['STRAIGHT'],fitsfile,straight,CONFIG['STRAIGHT_OPT']]
        args = [CONFIG['STRAIGHT'],fitsfile,straight]
        args.extend(CONFIG['STRAIGHT_OPT'])
Monica Rainer's avatar
Monica Rainer committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        subprocess.call(args)
        str_file = os.path.join(CONFIG['RED_STR'],os.path.basename(straight))
        try: shutil.copyfile(straight,str_file)
        except: pass

        self.messages.append('%s: orders straightened (nodding %s).' % (str(os.path.basename(fitsfile)),slit,))

        imstr = ccdproc.CCDData.read(straight, unit=u.adu)
        hea_ima = hea
        for key in CONFIG['STRAIGHT_PAR']:
            hea_ima[CONFIG['STRAIGHT_PAR'][key]] = imstr.header[CONFIG['STRAIGHT_PAR'][key]]
        imflat = imstr.data

        # read the number of images averaged to obtain the current image
        # in order to compute the SNR
        try: nspec = hea_ima[CONFIG['KEYS']['NCOMBINE']]
        except: nspec = 1

        # use only the regions of the orders
        try:
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)
        except:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False
            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            mflat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            varie.buildMaskC(mflat.data)
            self.messages.append('The extraction mask was created.')
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)

        gmask = goodmask.data


        roneff = hea_ima[CONFIG['RON_EFF'][0]]
        gaineff = hea_ima[CONFIG['GAIN_EFF'][0]]


        if CONFIG['USE_FLAT']['global']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = np.mean(flat.data)
            norflat = np.true_divide(flat.data,meanflat)
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)

        elif CONFIG['USE_FLAT']['order']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]


        elif CONFIG['USE_FLAT']['nor']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatnor')
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = 1.0
            norflat = flat.data
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)


        try:
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
        except:
            masterlamp = False

        if not masterlamp:
            db.copy_dbfile(self.dbconn,'une_str')
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
            db.copy_dbfile(self.dbconn,'une_calib')
            self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))

        mlamp = ccdproc.CCDData.read(masterlamp, unit=u.adu)

        lroneff = mlamp.header[CONFIG['RON_EFF'][0]]
        lgaineff = mlamp.header[CONFIG['GAIN_EFF'][0]]

        # read the lines to use in the wavelength calibration
        select_lines, all_lines = varie.UNe_linelist()

        # prepare the structure for the calibrated results
        heacal = OrderedDict()
Monica Rainer's avatar
Monica Rainer committed
300
301
302
303
        #stdSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        optSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        fsnr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
304

Monica Rainer's avatar
Monica Rainer committed
305
306
307
308
        all_cosmics = 0
        for x in xrange(CONFIG['N_ORD']):
            start = x*CONFIG['W_ORD']
            end = min(start+CONFIG['W_ORD'],CONFIG['YCCD'])
Monica Rainer's avatar
Monica Rainer committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

            # select only the rows wit the signal using the appropriate mask

            omask = gmask[start:end]

            order = imflat[start:end]
            if slit_pos == CONFIG['B_POS']:
                order = -order

            if CONFIG['USE_FLAT']['order']:
                ordflat = flat.data[start:end]
                # divide by masterflat normalized by its average value
                meanflat = np.mean(ordflat)
                norflat = np.true_divide(ordflat,meanflat)
                with np.errstate(divide='ignore', invalid='ignore'):
                    order = np.true_divide(order,norflat)

            ordermasked = np.ma.MaskedArray(order,mask=omask)
            goodorder = np.ma.compress_rows(ordermasked)

Monica Rainer's avatar
Monica Rainer committed
329
330
            optSpectrum[x],varOptFlux,profile,x1,x2,cosmics = varie.optExtract(goodorder,gaineff,roneff,slit_pos,x)
            all_cosmics = all_cosmics + cosmics
Monica Rainer's avatar
Monica Rainer committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

            #snr.append(round(max( (np.mean(optSpectrum[x][1000:1050])/np.std(optSpectrum[x][1000:1050])) ,0),2))
            #optSpectrum[x] = optSpectrum[x][::-1]
            #varOptFlux = varOptFlux[::-1]

            #t3 = time.time()

            olamp = mlamp.data[start:end]
            orderlamp = np.ma.MaskedArray(olamp,mask=omask)
            goodlamp = np.ma.compress_rows(orderlamp)

            extlamp = varie.extract(goodlamp, optSpectrum[x], x1, x2, profile, lgaineff, lroneff)

            if any(CONFIG['USE_FLAT'].values()) is True:
                extflat = varie.extract(norflat, optSpectrum[x], x1, x2, profile, fgaineff, froneff)
                #print extflat
                with np.errstate(divide='ignore', invalid='ignore'):
                    fsnr[x] = (np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))))/(fgaineff*(extflat*meanflat))
                    fsnr[fsnr==np.inf] = 0
                    fsnr[fsnr==-np.inf] = 0
                    fsnr = np.nan_to_num(fsnr)
                #print fsnr
            else:
                fsnr[x] = np.zeros(len(optSpectrum[x]))

            with np.errstate(divide='ignore', invalid='ignore'):
                ssnr = (np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])))/(gaineff*nspec*optSpectrum[x])
                snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))

            calib_failed, coeffs, comments = varie.UNe_calibrate(extlamp,x+32,select_lines[x+32],all_lines[x+32])

            for comment in comments:
                self.messages.append(comment)


            if calib_failed:
                self.messages.append(' *** WARNING ***')
                self.messages.append('The default wavelength calibration for the order %s will be taken from the database and as such it will not be optimal for the night.' % (str(x+32),))
                wcalib = db.extract_dbfile(self.dbconn,'une_calib')
                wlc = ccdproc.CCDData.read(wcalib, unit=u.adu)
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = wlc.header[keyword]

            else:
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = (coeffs[key],CONFIG['WLCOEFFS'][key][1])


        optSpectrum = np.asarray(optSpectrum, dtype='float32')

        self.messages.append('The nodding %s was extracted.' % str(slit),)
Monica Rainer's avatar
Monica Rainer committed
384
385
386
387
388
        if all_cosmics == 1050:
            self.messages.append('%s cosmics were removed (maximum iteration reached).' % str(all_cosmics),)
        else:
            self.messages.append('%s cosmics were removed.' % str(all_cosmics),)

Monica Rainer's avatar
Monica Rainer committed
389
390
391
392
393
394
395

        if slit_pos == CONFIG['A_POS']:
            keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            aname = hea_ima[keyA]
            nomebase = os.path.splitext(aname)[0]
            #qui = aname.rindex('.')
            if 'grp' in fitsfile:
396
397
398
399
                msfx = ''.join(('Agrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Agrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
400
            else:
401
402
403
404
405
406
407
                msfx = ''.join(('A_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('A_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'A_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'A_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
408
409
410
411
412
413
414
415

            #calname = str(os.path.basename(fitsfile)).replace('_AB','_A')
        elif slit_pos == CONFIG['B_POS']:
            keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
            bname = hea_ima[keyB]
            nomebase = os.path.splitext(bname)[0]
            #qui = bname.rindex('.')
            if 'grp' in fitsfile:
416
417
418
419
                msfx = ''.join(('Bgrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Bgrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
420
            else:
421
422
423
424
425
426
427
                msfx = ''.join(('B_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('B_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'B_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'B_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
428
429
430
431
432
433
434
435
436
437
            #calname = str(os.path.basename(fitsfile)).replace('_AB','_B')
        else: 
            print 'Wrong slit position!'


        heaspe = fits.Header(hea_ima)
        heaspe[CONFIG['KEYS']['FILENAME']] = calname
        drs_mjd = float(heaspe[CONFIG['KEYS']['MJD']]) + (float(heaspe[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        heaspe[CONFIG['DRS_MJD'][0]] = (drs_mjd,CONFIG['DRS_MJD'][1])

Monica Rainer's avatar
Monica Rainer committed
438
        try:
439
440
441
            heaspe[CONFIG['MASTERFLAT'][0]] = (os.path.basename(masterflat),CONFIG['MASTERFLAT'][1])
        except:
            heaspe[CONFIG['MASTERFLAT'][0]] = ('None',CONFIG['MASTERFLAT'][1])
Monica Rainer's avatar
Monica Rainer committed
442
        try:
443
444
445
            heaspe[CONFIG['MASTERLAMP'][0]] = (os.path.basename(masterlamp),CONFIG['MASTERLAMP'][1])
        except:
            heaspe[CONFIG['MASTERLAMP'][0]] = ('None',CONFIG['MASTERLAMP'][1])
446

Monica Rainer's avatar
Monica Rainer committed
447
448
449
450
        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
451
452
453
454
455
456
457
458
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(slit),str(snry),))
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % (str(slit),str(snrj),))
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % (str(slit),str(snrh),))
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % (str(slit),str(snrk),))
Monica Rainer's avatar
Monica Rainer committed
459

Monica Rainer's avatar
Monica Rainer committed
460

Monica Rainer's avatar
Monica Rainer committed
461
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
462
463
464
465
466
467
468
469
470
471
472
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            heaspe[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])

        heaspe[CONFIG['WLFIT'][0]] = (CONFIG['WLFIT_FUNC'],CONFIG['WLFIT'][1])
        for hea in heacal:
            heaspe[hea] = heacal[hea]

        barycorr, hjd = varie.berv_corr(heaspe)
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])

Monica Rainer's avatar
Monica Rainer committed
473
474
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
475
476
            waves[o] = varie.wcalib(heaspe,o)

477
478
479
480
481
482
483
484
485
        #spefits = fits.PrimaryHDU(optSpectrum,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])

        #calname = os.path.join(CONFIG['RED_DIR'],calname)
        #results.writeto(calname,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
486

487
488
489
490
491
492
493
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=optSpectrum)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
494
495

        calname = os.path.join(CONFIG['RED_DIR'],calname)
496
        tbhdu.writeto(calname,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
497

Monica Rainer's avatar
Monica Rainer committed
498
499
500
501
        #t1 = time.time()

        #print 's1d'
        #print calname1d
Monica Rainer's avatar
Monica Rainer committed
502
503
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'
Monica Rainer's avatar
Monica Rainer committed
504
505
506

        if CONFIG['S1D']:
            #s1d = varie.create_s1d(optSpectrum,snr,heaspe)
507
            s1d, startval = varie.create_s1d(optSpectrum,heaspe)
Monica Rainer's avatar
Monica Rainer committed
508
509
            heaspe[CONFIG['KEYS']['FILENAME']] = calname1d
            heaspe['CRPIX1'] = (1.,'Reference pixel')
510
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
511
512
513
514
515
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

516
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
517
518
519
            calname1d = os.path.join(CONFIG['RED_DIR'],calname1d)
            s1dfits.writeto(calname1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
520
521
522
523
524
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':slit, 'path':calname1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':slit, 'path':calname, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
525
526
        #t2 = time.time()
        #print 's1d spectrum: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
527
528

        if hea_ima[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTPAIR']:
Monica Rainer's avatar
Monica Rainer committed
529
            return calname, fsnr, straight, dbreduced
Monica Rainer's avatar
Monica Rainer committed
530
531

        elif 'grp' in fitsfile:
Monica Rainer's avatar
Monica Rainer committed
532
            return calname, fsnr, straight, dbreduced
Monica Rainer's avatar
Monica Rainer committed
533

Monica Rainer's avatar
Monica Rainer committed
534
        return calname, fsnr, False, dbreduced
Monica Rainer's avatar
Monica Rainer committed
535
536
537
538


    def combine(self,acalib,bcalib,fsnr):

Monica Rainer's avatar
Monica Rainer committed
539
540
        dbreduced = {}

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        #abnome = acalib.replace('_A_e2ds.fits','_AB_e2ds.fits')
        #abnome1d = acalib.replace('_A_e2ds.fits','_AB_s1d.fits')
        #abnome = abnome.replace('_Agrp_e2ds.fits','_ABgrp_e2ds.fits')
        #abnome1d = abnome1d.replace('_Agrp_e2ds.fits','_ABgrp_s1d.fits')

        old = ''.join(('_A_',CONFIG['UNMERGED'],'.fits'))
        oldgrp = ''.join(('_Agrp_',CONFIG['UNMERGED'],'.fits'))
        sfx = ''.join(('_AB_',CONFIG['MERGED'],'.fits'))
        msfx = ''.join(('_AB_',CONFIG['UNMERGED'],'.fits'))
        grp = ''.join(('_ABgrp_',CONFIG['MERGED'],'.fits'))
        mgrp = ''.join(('_ABgrp_',CONFIG['UNMERGED'],'.fits'))

        abnome = acalib.replace(old,msfx)
        abnome1d = acalib.replace(old,sfx)
        abnome = abnome.replace(oldgrp,mgrp)
        abnome1d = abnome1d.replace(oldgrp,grp)

Monica Rainer's avatar
Monica Rainer committed
558
559
        #print abnome
        #print abnome1d
Monica Rainer's avatar
Monica Rainer committed
560
561

        acal = fits.open(acalib)
562
563
564
565
566
567
568
569
570
571
572
573
574
575

        #afluxes = acal[0].data
        #awaves = acal[0].header
        #roneff = math.sqrt(2)*acal[0].header[CONFIG['RON_EFF'][0]]
        #gaineff = 2*acal[0].header[CONFIG['GAIN_EFF'][0]]
        adata = acal[1].data
        #print adata.shape
        afluxes = adata.field(2)
        #print afluxes
        #print afluxes.shape
        awaves = acal[1].header
        roneff = math.sqrt(2)*acal[1].header[CONFIG['RON_EFF'][0]]
        gaineff = 2*acal[1].header[CONFIG['GAIN_EFF'][0]]

Monica Rainer's avatar
Monica Rainer committed
576
        bcal = fits.open(bcalib)
577
578
579
580
581
582

        #bfluxes = bcal[0].data
        #bwaves = bcal[0].header
        bdata = bcal[1].data
        bfluxes = bdata.field(2)
        bwaves = bcal[1].header
Monica Rainer's avatar
Monica Rainer committed
583

Monica Rainer's avatar
Monica Rainer committed
584
        abcalib = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
585

Monica Rainer's avatar
Monica Rainer committed
586
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
587

Monica Rainer's avatar
Monica Rainer committed
588
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
589
590
591
592
593
594
595
596
597
            bshift = varie.rebin(awaves,bfluxes[o],bwaves,o)
            abcalib[o] = (afluxes[o]+bshift)/2.0
            #snr.append(max(np.mean(abcalib[o][1000:1050])/np.std(abcalib[o][1000:1050]),0))
            with np.errstate(divide='ignore', invalid='ignore'):
                ssnr = (np.sqrt(roneff**2 + (gaineff*2*abcalib[o])))/(gaineff*2*abcalib[o])
                snr[o] = 1.0/(np.sqrt(ssnr**2 + fsnr[o]**2))

        abcalib = np.asarray(abcalib, dtype='float32')

598
599
        #abhea = acal[0].header
        abhea = acal[1].header
Monica Rainer's avatar
Monica Rainer committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        abhea[CONFIG['RON_EFF'][0]] = (roneff,CONFIG['RON_EFF'][1])
        abhea[CONFIG['GAIN_EFF'][0]] = (gaineff,CONFIG['GAIN_EFF'][1])
        #abhea[CONFIG['TEXP_EFF'][0]] = (,CONFIG['TEXP_EFF'][1])
        abhea[CONFIG['KEYS']['SLIT']] = 'AB'
        n = abhea[CONFIG['KEYS']['NCOMBINE']]
        key_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        mjdA = float(abhea[key_mjdA]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        key_mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(int(n/2)),'B'))
        mjdB = float(abhea[key_mjdB]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        mjd = (mjdA+mjdB)/2.0
        abhea[CONFIG['DRS_MJD'][0]] = (mjd,CONFIG['DRS_MJD'][1])

        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
616
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
617
618
619
620
621
622
623
624
625
626
627
628
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            abhea[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])


        heaspe = fits.Header(abhea)

        barycorr, hjd = varie.berv_corr(heaspe)
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])


        try:
629
630
631
632
            #am_a = acal[0].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[0].header[CONFIG['AIRMASS'][0]]
            am_a = acal[1].header[CONFIG['AIRMASS'][0]]
            am_b = bcal[1].header[CONFIG['AIRMASS'][0]]
Monica Rainer's avatar
Monica Rainer committed
633
        except:
634
635
636
637
            #am_a = acal[0].header[CONFIG['KEYS']['AM']]
            #am_b = bcal[0].header[CONFIG['KEYS']['AM']]
            am_a = acal[1].header[CONFIG['KEYS']['AM']]
            am_b = bcal[1].header[CONFIG['KEYS']['AM']]
Monica Rainer's avatar
Monica Rainer committed
638
639
640
641
642
643
644
645
646
647

        am = (am_a+am_b)/2.0

        heaspe[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        try:
            heaspe[CONFIG['AIRMASS'][0]]
        except:
            heaspe[CONFIG['AIRMASS'][0]] = (heaspe[CONFIG['KEYS']['AM']],CONFIG['AIRMASS'][1])

Monica Rainer's avatar
Monica Rainer committed
648

Monica Rainer's avatar
Monica Rainer committed
649
650
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
651
652
            waves[o] = varie.wcalib(heaspe,o)

653
654
655
656
657
658
659
660
        #spefits = fits.PrimaryHDU(abcalib,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])


        #results.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
661

Monica Rainer's avatar
Monica Rainer committed
662
663
664
665
666
667
668
669
670
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % ('AB',str(snry)),)
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % ('AB',str(snrj)),)
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % ('AB',str(snrh)),)
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % ('AB',str(snrk)),)

Monica Rainer's avatar
Monica Rainer committed
671

672
673
674
675
676
677
678
679
680
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=abcalib)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)

        tbhdu.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
681
682


Monica Rainer's avatar
Monica Rainer committed
683
684
685
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'

Monica Rainer's avatar
Monica Rainer committed
686
687
688
        if CONFIG['S1D']:

            #s1d = varie.create_s1d(abcalib,snr,heaspe)
689
            s1d, startval = varie.create_s1d(abcalib,heaspe)
Monica Rainer's avatar
Monica Rainer committed
690
            heaspe['CRPIX1'] = (1.,'Reference pixel')
691
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
692
693
694
695
696
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

697
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
698
699
700

            s1dfits.writeto(abnome1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
701
702
703
704
705
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':'AB', 'path':abnome1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':'AB', 'path':abnome, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
706

Monica Rainer's avatar
Monica Rainer committed
707

Monica Rainer's avatar
Monica Rainer committed
708

Monica Rainer's avatar
Monica Rainer committed
709
710
711
712
713
714
        #calibrated = np.vstack((np.concatenate(np.flipud(awaves)),np.concatenate(np.flipud(abcalib))))
        #print calibrated

        #extract = abnome.replace('.fits','.txt')
        #ascii.write(np.transpose(calibrated),extract)

Monica Rainer's avatar
Monica Rainer committed
715
        return dbreduced
Monica Rainer's avatar
Monica Rainer committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784


    def group_avg(self):
        noddings = []
        headers = []
        am = []
        #print self.group['noddings']
        for n in self.group['noddings']:
            nod = ccdproc.CCDData.read(n, unit=u.adu)
            noddings.append(nod)
            headers.append(nod.header)
            am.append(nod.header[CONFIG['KEYS']['AM']])

        combine_nod = ccdproc.Combiner(noddings)
        nodA = combine_nod.average_combine()
        nodA.data = np.asarray(nodA.data, dtype='float32')

        nodA.header = headers[0]

        ABnome = str(os.path.basename(self.group['noddings'][0])).replace('_AB.fits','_ABgrp.fits')

        nodA.header[CONFIG['KEYS']['FILENAME']] = ABnome
        nodA.header[CONFIG['GAIN_EFF'][0]] = (len(self.group['noddings'])*headers[0][CONFIG['GAIN_EFF'][0]],CONFIG['GAIN_EFF'][1])
        nodA.header[CONFIG['RON_EFF'][0]] = (headers[0][CONFIG['RON_EFF'][0]]*math.sqrt(len(self.group['noddings'])),CONFIG['RON_EFF'][1])

        nodA.header[CONFIG['KEYS']['NCOMBINE']] = len(self.group['noddings'])*2
        for n in xrange(len(self.group['noddings'])):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'A'))
            keyB = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'B'))


            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'A'))
            mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'B'))

            readA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            readB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))

            read_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
            read_mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

            value_keyA = headers[n][readA]
            value_keyB = headers[n][readB]

            value_mjdA = headers[n][read_mjdA]
            value_mjdB = headers[n][read_mjdB]

            nodA.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            nodA.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

            nodA.header[keyB] = (value_keyB,CONFIG['SPEC_USED'][1])
            nodA.header[mjdB] = (value_mjdB,CONFIG['SPEC_MJD'][1])

        am = np.average(np.asarray(am))
        nodA.header[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        heaA = nodA.header
        heaB = nodA.header
        heaA[CONFIG['KEYS']['SLIT']] = CONFIG['A']
        heaA[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
        heaB[CONFIG['KEYS']['SLIT']] = CONFIG['B']
        heaB[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]


        Atmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)
        #nodAfits = nodA.to_hdu()
        hdu = fits.PrimaryHDU(data=nodA.data,header=nodA.header)
        nodAfits = fits.HDUList([hdu])
        nodAfits.writeto(Atmpnome,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
785

Monica Rainer's avatar
Monica Rainer committed
786
787
788
789
790
791
792
        for n in self.group['noddings']:
            os.remove(n)

        return Atmpnome, heaA, heaB


    def pair_process(self):
793
        #reduced = ','.join(map(os.path.basename,self.nodding))
Monica Rainer's avatar
Monica Rainer committed
794
        stamp = time.time()
795
796
        #db.insert_dbnight(self.dbnight, reduced, stamp)
        db.insert_dbnight(self.dbnight, self.nodding, stamp)
Monica Rainer's avatar
Monica Rainer committed
797

Monica Rainer's avatar
Monica Rainer committed
798
799
800
801
802
803
        warnings.simplefilter('ignore', category=AstropyWarning)
        if self.qualitycheck():
            #t1 = time.time()
            ab, heaA, heaB = self.createAB()
            #t2 = time.time()
            #print 'Bad pixels, create nodding: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
            acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)

            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

            bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

            dbreduced = self.combine(acalib,bcalib,fsnr)
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

Monica Rainer's avatar
Monica Rainer committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            if straight:
                os.remove(ab)
                os.remove(straight)
            acalib = None
            bcalib = None
        self.nodding[:] = []
        self.nodlist[:] = []
        if not self.group['noddings']:
            self.group.clear()
        return

    def group_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.pair_process()
840
841
842
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1 :
                ab, heaA, heaB = self.group_avg()
Monica Rainer's avatar
Monica Rainer committed
843
844
845
                acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
                dbreduced = self.combine(acalib,bcalib,fsnr)
846
847
848
849
850
851
852
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
853
854
855
856
857
858
859
            self.messages.append('There are no available spectra in this nodding group.')
        self.group.clear()
        return

    def ingroup_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.nodding[:] = []
860
861
862
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1:
                ab, heaA, heaB = self.group_avg()
Monica Rainer's avatar
Monica Rainer committed
863
864
865
                acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
                dbreduced = self.combine(acalib,bcalib,fsnr)
866
867
868
869
870
871
872
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this incomplete nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
873
874
875
876
877
878
            self.messages.append('There are no available spectra in this incomplete nodding group.')
        self.group.clear()
        return