nodding.py 37.6 KB
Newer Older
Monica Rainer's avatar
Monica Rainer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Reduction of the single AB nodding:
- check the image quality (signal in well defined region)
- check that the exposure times of A and B are the same
- remove bad pixel using the bad pixel mask
- create nodding A-B
- straigthen the nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
Reduction of the nodding group:
- average the A noddings
- average the B noddings
- create average nodding A-B
- straigthen the average nodding
- divide by the masterflat (if required)
- perform optimal extraction of A-B and B-A
- use the optimal profiles with UNe lamp and do wavelength calibration of A-B and B-A
- save A, B and the average of A+B
"""


from drslib.config import CONFIG
from drslib import db, varie

from astropy import units as u
from astropy.io import ascii, fits

import warnings
from astropy.utils.exceptions import AstropyWarning
import ccdproc

import numpy as np
import math, os, subprocess, time, shutil

from collections import OrderedDict
#import matplotlib.pyplot as plt


class GBNodding():
Monica Rainer's avatar
Monica Rainer committed
42
    def __init__(self, nodding, group, dbconn, dbnight):
Monica Rainer's avatar
Monica Rainer committed
43
44
45
        self.nodding = nodding
        self.group = group
        self.dbconn = dbconn
Monica Rainer's avatar
Monica Rainer committed
46
        self.dbnight = dbnight
Monica Rainer's avatar
Monica Rainer committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        self.quality = []
        self.messages = []
        self.nodlist = []
        self.nodcorr = {}

    def qualitycheck(self):
        """
        Check image's quality: check the signal in a well-defined region.
        If one of the nodding images fails the check, the other will be discarded too.
        Check that the exposure time of the nodding is the same for the two images.
        """

        expt = []
        for frame in self.nodding:
            #print frame

            nod = ccdproc.CCDData.read(frame, unit=u.adu)
            expt.append(nod.header[CONFIG['KEYS']['EXPTIME']])

            # check the signal in a well-defined zone

            zone = nod.data[CONFIG['SCIENCECHECK'][0]:CONFIG['SCIENCECHECK'][1],CONFIG['SCIENCECHECK'][2]:CONFIG['SCIENCECHECK'][3]]
            mean = np.mean(zone)

            if mean < CONFIG['NODSIGNAL']:
                self.messages.append('Science frame %s failed quality check: signal too low (%s). Neither of the nodding images (%s and %s) will be reduced.' % (str(os.path.basename(frame)),str(mean),str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
                nod = None

                return False

            else:
                self.nodlist.append(nod)

        if expt[0] != expt[1]:
            self.messages.append('The two nodding images %s and %s have different exposure times and they can not be reduced.' % (str(os.path.basename(self.nodding[0])),str(os.path.basename(self.nodding[1]))))
            return False

        return True


    def createAB(self):
        """
        Create nodding images A-B and save them in temporary directory if
        the keyword SPEXTMODE is set to GRPAVG_EXT.
        """

        hea = self.nodlist[0].header

        badpix = ccdproc.CCDData.read(CONFIG['BADPIX_MASK'], unit=u.adu)
        bad_mask=badpix.data
        inverse_mask=np.logical_not(bad_mask)

        for nod in self.nodlist:

            # mask the image using the badpix mask
            nod_corrected = varie.badpix(nod.data,bad_mask,inverse_mask)
            self.messages.append('Bad pixel correction done.')

            nod_corr = ccdproc.CCDData(nod_corrected,unit=u.adu)
            nod_corr.header = nod.header

            self.nodcorr[nod.header[CONFIG['KEYS']['SLIT']]] = nod_corr
            nod = None

        # Create A-B image

        nodA = self.nodcorr[CONFIG['A']]
        nodB = self.nodcorr[CONFIG['B']]
        AB = nodA.data - nodB.data
        nodAB = ccdproc.CCDData(AB, unit=u.adu)
        nodAB.data = np.asarray(nodAB.data, dtype='float32')
        nodAB.header = hea
        heaA = nodA.header
        heaB = nodB.header
        #qui = str(os.path.basename(self.nodding[0])).rindex('.')
        #ABnome = '_'.join((str(os.path.basename(self.nodding[0]))[0:qui], 'AB.fits'))
        nomebase = os.path.splitext(os.path.basename(self.nodding[0]))[0]
        ABnome = '_'.join((nomebase, 'AB.fits'))

        keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
        mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
        mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

        for h in (heaA,heaB,nodAB.header):
            h[CONFIG['GAIN_EFF'][0]] = (CONFIG['GAIN'],CONFIG['GAIN_EFF'][1])
            h[CONFIG['RON_EFF'][0]] = (CONFIG['RON']*math.sqrt(2),CONFIG['RON_EFF'][1])
            h[CONFIG['KEYS']['NCOMBINE']] = 2
            h[keyA] = (nodA.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdA] = (nodA.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])
            h[keyB] = (nodB.header[CONFIG['KEYS']['IMANAME']],CONFIG['SPEC_USED'][1])
            h[mjdB] = (nodB.header[CONFIG['KEYS']['MJD']],CONFIG['SPEC_MJD'][1])

        nodAB.header[CONFIG['KEYS']['FILENAME']] = ABnome
141
        nodAB.header[CONFIG['KEYS']['IMANAME']] = ABnome
Monica Rainer's avatar
Monica Rainer committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        ABtmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)


        try:
            nodAB.header[CONFIG['KEYS']['EXTMODE']]
        except:
            nodAB.header[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaA[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']
            heaB[CONFIG['KEYS']['EXTMODE']] = CONFIG['EXTDEFAULT']

        if nodAB.header[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTAVG']:
            self.group['noddings'].append(ABtmpnome)


        hdu = fits.PrimaryHDU(data=nodAB.data,header=nodAB.header)
        nodABfits = fits.HDUList([hdu])
        nodABfits.writeto(ABtmpnome,clobber=True)

        self.messages.append('A-B nodding created.')
        nodA = None
        nodB = None

        return ABtmpnome, heaA, heaB

    def reduce(self,fitsfile,slit_pos,hea):
        """
        Straighten, divide by the masterflat, optimal extraction
        """
Monica Rainer's avatar
Monica Rainer committed
170
        dbreduced = {}
Monica Rainer's avatar
Monica Rainer committed
171
172
173
174
175
176
177
178
179

        if slit_pos == CONFIG['A_POS']:
            slit = 'A'
        else:
            slit = 'B'

        # straighten

        straight = fitsfile.replace('.fits','_str.fits')
180

181
182
183
184
185
        args = [CONFIG['STRAIGHT'],fitsfile,straight]
        args.extend(CONFIG['STRAIGHT_OPT'])
        # search for shift defined in the straighten options in config.py
        dy = True
        for opt in CONFIG['STRAIGHT_OPT']:
186
            try:
187
188
189
190
                dy = opt.rindex('DY=')
                ypos = int(opt[dy-2:])
                shift = CONFIG['SHIFT_Y'] + ypos
                dy = False
191
            except:
192
193
194
195
196
197
198
199
200
201
202
                pass

        if dy:
            shift = db.extract_dbfile(self.dbconn,'shiftY')
            if not shift:
                cal_flat = db.extract_dbfile(self.dbconn,'flat')
                if cal_flat:
                    mflat = ccdproc.CCDData.read(cal_flat, unit=u.adu)
                    shift = varie.shiftY(mflat.data)
                    db.insert_dbfile(self.dbconn,'shiftY',shift)
                else:
203
204
205
206
207
                    db.copy_dbfile(self.dbconn,'shiftY')
                    shift = db.extract_dbfile(self.dbconn,'shiftY')
                    if not shift:
                        shift = CONFIG['SHIFT_Y']

208
209
210
            shiftY = [''.join(('DY=',str(shift - CONFIG['SHIFT_Y'])))]
            #print shiftY
            args.extend(shiftY)
211

Monica Rainer's avatar
Monica Rainer committed
212
        subprocess.call(args)
213

Monica Rainer's avatar
Monica Rainer committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        str_file = os.path.join(CONFIG['RED_STR'],os.path.basename(straight))
        try: shutil.copyfile(straight,str_file)
        except: pass

        self.messages.append('%s: orders straightened (nodding %s).' % (str(os.path.basename(fitsfile)),slit,))

        imstr = ccdproc.CCDData.read(straight, unit=u.adu)
        hea_ima = hea
        for key in CONFIG['STRAIGHT_PAR']:
            hea_ima[CONFIG['STRAIGHT_PAR'][key]] = imstr.header[CONFIG['STRAIGHT_PAR'][key]]
        imflat = imstr.data

        # read the number of images averaged to obtain the current image
        # in order to compute the SNR
        try: nspec = hea_ima[CONFIG['KEYS']['NCOMBINE']]
        except: nspec = 1

        # use only the regions of the orders
        try:
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)
        except:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False
            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            mflat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            varie.buildMaskC(mflat.data)
            self.messages.append('The extraction mask was created.')
            goodmask = ccdproc.CCDData.read(CONFIG['MASK_C'], unit=u.adu)

        gmask = goodmask.data


        roneff = hea_ima[CONFIG['RON_EFF'][0]]
        gaineff = hea_ima[CONFIG['GAIN_EFF'][0]]


        if CONFIG['USE_FLAT']['global']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = np.mean(flat.data)
            norflat = np.true_divide(flat.data,meanflat)
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)

        elif CONFIG['USE_FLAT']['order']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatstr')
                masterflat = db.extract_dbfile(self.dbconn,'flatstr')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))
            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]


        elif CONFIG['USE_FLAT']['nor']:
            try:
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
            except:
                masterflat = False

            if not masterflat:
                db.copy_dbfile(self.dbconn,'flatnor')
                masterflat = db.extract_dbfile(self.dbconn,'flatnor')
                self.messages.append('No masterflat found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterflat)))

            flat = ccdproc.CCDData.read(masterflat, unit=u.adu)
            froneff = flat.header[CONFIG['RON_EFF'][0]]
            fgaineff = flat.header[CONFIG['GAIN_EFF'][0]]
            meanflat = 1.0
            norflat = flat.data
            with np.errstate(divide='ignore', invalid='ignore'):
                imflat = np.true_divide(imflat,norflat)


        try:
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
        except:
            masterlamp = False

        if not masterlamp:
            db.copy_dbfile(self.dbconn,'une_str')
            masterlamp = db.extract_dbfile(self.dbconn,'une_str')
            db.copy_dbfile(self.dbconn,'une_calib')
            self.messages.append('No calibration lamp found for this night, it will be taken from the calibration database: %s' % (os.path.basename(masterlamp)))

        mlamp = ccdproc.CCDData.read(masterlamp, unit=u.adu)

        lroneff = mlamp.header[CONFIG['RON_EFF'][0]]
        lgaineff = mlamp.header[CONFIG['GAIN_EFF'][0]]

        # read the lines to use in the wavelength calibration
        select_lines, all_lines = varie.UNe_linelist()

        # prepare the structure for the calibrated results
        heacal = OrderedDict()
Monica Rainer's avatar
Monica Rainer committed
330
331
332
333
        #stdSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        optSpectrum = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        fsnr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
334

Monica Rainer's avatar
Monica Rainer committed
335
336
337
338
        all_cosmics = 0
        for x in xrange(CONFIG['N_ORD']):
            start = x*CONFIG['W_ORD']
            end = min(start+CONFIG['W_ORD'],CONFIG['YCCD'])
Monica Rainer's avatar
Monica Rainer committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

            # select only the rows wit the signal using the appropriate mask

            omask = gmask[start:end]

            order = imflat[start:end]
            if slit_pos == CONFIG['B_POS']:
                order = -order

            if CONFIG['USE_FLAT']['order']:
                ordflat = flat.data[start:end]
                # divide by masterflat normalized by its average value
                meanflat = np.mean(ordflat)
                norflat = np.true_divide(ordflat,meanflat)
                with np.errstate(divide='ignore', invalid='ignore'):
                    order = np.true_divide(order,norflat)

            ordermasked = np.ma.MaskedArray(order,mask=omask)
            goodorder = np.ma.compress_rows(ordermasked)

Monica Rainer's avatar
Monica Rainer committed
359
360
            optSpectrum[x],varOptFlux,profile,x1,x2,cosmics = varie.optExtract(goodorder,gaineff,roneff,slit_pos,x)
            all_cosmics = all_cosmics + cosmics
Monica Rainer's avatar
Monica Rainer committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

            #snr.append(round(max( (np.mean(optSpectrum[x][1000:1050])/np.std(optSpectrum[x][1000:1050])) ,0),2))
            #optSpectrum[x] = optSpectrum[x][::-1]
            #varOptFlux = varOptFlux[::-1]

            #t3 = time.time()

            olamp = mlamp.data[start:end]
            orderlamp = np.ma.MaskedArray(olamp,mask=omask)
            goodlamp = np.ma.compress_rows(orderlamp)

            extlamp = varie.extract(goodlamp, optSpectrum[x], x1, x2, profile, lgaineff, lroneff)

            if any(CONFIG['USE_FLAT'].values()) is True:
                extflat = varie.extract(norflat, optSpectrum[x], x1, x2, profile, fgaineff, froneff)
                #print extflat
                with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
378
379
                    #fsnr[x] = (np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))))/(fgaineff*(extflat*meanflat))
                    fsnr[x] = np.true_divide(np.sqrt(froneff**2 + (fgaineff*(extflat*meanflat))),fgaineff*(extflat*meanflat))
Monica Rainer's avatar
Monica Rainer committed
380
381
382
383
384
385
386
387
                    fsnr[fsnr==np.inf] = 0
                    fsnr[fsnr==-np.inf] = 0
                    fsnr = np.nan_to_num(fsnr)
                #print fsnr
            else:
                fsnr[x] = np.zeros(len(optSpectrum[x]))

            with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
388
389
                #ssnr = (np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])))/(gaineff*nspec*optSpectrum[x])
                ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*nspec*optSpectrum[x])),gaineff*nspec*optSpectrum[x])
Monica Rainer's avatar
Monica Rainer committed
390
391
392
393
394
395
396
                snr[x] = 1.0/(np.sqrt(ssnr**2 + fsnr[x]**2))

            calib_failed, coeffs, comments = varie.UNe_calibrate(extlamp,x+32,select_lines[x+32],all_lines[x+32])

            for comment in comments:
                self.messages.append(comment)

Monica Rainer's avatar
Monica Rainer committed
397
            keyfail = ''.join((CONFIG['CAL_FAILED'][0],str(x+32)))
Monica Rainer's avatar
Monica Rainer committed
398
399

            if calib_failed:
Monica Rainer's avatar
Monica Rainer committed
400
                heacal[keyfail] = (False,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
401
402
403
404
405
406
407
408
409
                self.messages.append(' *** WARNING ***')
                self.messages.append('The default wavelength calibration for the order %s will be taken from the database and as such it will not be optimal for the night.' % (str(x+32),))
                wcalib = db.extract_dbfile(self.dbconn,'une_calib')
                wlc = ccdproc.CCDData.read(wcalib, unit=u.adu)
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = wlc.header[keyword]

            else:
Monica Rainer's avatar
Monica Rainer committed
410
                heacal[keyfail] = (True,CONFIG['CAL_FAILED'][1])
Monica Rainer's avatar
Monica Rainer committed
411
412
413
414
415
416
417
418
                for key in coeffs:
                    keyword = ''.join((CONFIG['WLCOEFFS'][key][0],str(x+32)))
                    heacal[keyword] = (coeffs[key],CONFIG['WLCOEFFS'][key][1])


        optSpectrum = np.asarray(optSpectrum, dtype='float32')

        self.messages.append('The nodding %s was extracted.' % str(slit),)
Monica Rainer's avatar
Monica Rainer committed
419
420
421
422
423
        if all_cosmics == 1050:
            self.messages.append('%s cosmics were removed (maximum iteration reached).' % str(all_cosmics),)
        else:
            self.messages.append('%s cosmics were removed.' % str(all_cosmics),)

Monica Rainer's avatar
Monica Rainer committed
424
425
426
427
428
429
430

        if slit_pos == CONFIG['A_POS']:
            keyA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            aname = hea_ima[keyA]
            nomebase = os.path.splitext(aname)[0]
            #qui = aname.rindex('.')
            if 'grp' in fitsfile:
431
432
433
434
                msfx = ''.join(('Agrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Agrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
435
            else:
436
437
438
439
440
441
442
                msfx = ''.join(('A_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('A_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'A_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'A_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
443
444
445
446
447
448
449
450

            #calname = str(os.path.basename(fitsfile)).replace('_AB','_A')
        elif slit_pos == CONFIG['B_POS']:
            keyB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))
            bname = hea_ima[keyB]
            nomebase = os.path.splitext(bname)[0]
            #qui = bname.rindex('.')
            if 'grp' in fitsfile:
451
452
453
454
                msfx = ''.join(('Bgrp_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('Bgrp_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,msfx))
                #calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
455
            else:
456
457
458
459
460
461
462
                msfx = ''.join(('B_',CONFIG['UNMERGED'],'.fits'))
                sfx = ''.join(('B_',CONFIG['MERGED'],'.fits'))
                #calname = '_'.join((nomebase,'B_e2ds.fits'))
                #calname1d = '_'.join((nomebase,'B_s1d.fits'))

            calname = '_'.join((nomebase,msfx))
            calname1d = '_'.join((nomebase,sfx))
Monica Rainer's avatar
Monica Rainer committed
463
464
465
466
467
468
469
            #calname = str(os.path.basename(fitsfile)).replace('_AB','_B')
        else: 
            print 'Wrong slit position!'


        heaspe = fits.Header(hea_ima)
        heaspe[CONFIG['KEYS']['FILENAME']] = calname
470
        heaspe[CONFIG['KEYS']['IMANAME']] = calname
Monica Rainer's avatar
Monica Rainer committed
471
        drs_mjd = float(heaspe[CONFIG['KEYS']['MJD']]) + (float(heaspe[CONFIG['KEYS']['EXPTIME']])/(2.0*86400.0))
Monica Rainer's avatar
Monica Rainer committed
472
473
        heaspe[CONFIG['DRS_MJD'][0]] = (drs_mjd,CONFIG['DRS_MJD'][1])

Monica Rainer's avatar
Monica Rainer committed
474
        try:
475
476
477
            heaspe[CONFIG['MASTERFLAT'][0]] = (os.path.basename(masterflat),CONFIG['MASTERFLAT'][1])
        except:
            heaspe[CONFIG['MASTERFLAT'][0]] = ('None',CONFIG['MASTERFLAT'][1])
Monica Rainer's avatar
Monica Rainer committed
478
        try:
479
480
481
            heaspe[CONFIG['MASTERLAMP'][0]] = (os.path.basename(masterlamp),CONFIG['MASTERLAMP'][1])
        except:
            heaspe[CONFIG['MASTERLAMP'][0]] = ('None',CONFIG['MASTERLAMP'][1])
482

Monica Rainer's avatar
Monica Rainer committed
483
484
485
486
        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
487
488
489
490
491
492
493
494
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % (str(slit),str(snry),))
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % (str(slit),str(snrj),))
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % (str(slit),str(snrh),))
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % (str(slit),str(snrk),))
Monica Rainer's avatar
Monica Rainer committed
495

Monica Rainer's avatar
Monica Rainer committed
496

Monica Rainer's avatar
Monica Rainer committed
497
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
498
499
500
501
502
503
504
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            heaspe[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])

        heaspe[CONFIG['WLFIT'][0]] = (CONFIG['WLFIT_FUNC'],CONFIG['WLFIT'][1])
        for hea in heacal:
            heaspe[hea] = heacal[hea]

Monica Rainer's avatar
Monica Rainer committed
505
        barycorr, hjd, bjd = varie.berv_corr(heaspe)
Monica Rainer's avatar
Monica Rainer committed
506
507
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])
Monica Rainer's avatar
Monica Rainer committed
508
        heaspe[CONFIG['BJD'][0]] = (bjd,CONFIG['BJD'][1])
Monica Rainer's avatar
Monica Rainer committed
509

Monica Rainer's avatar
Monica Rainer committed
510
511
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
512
513
            waves[o] = varie.wcalib(heaspe,o)

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        #spefits = fits.PrimaryHDU(optSpectrum,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])

        #calname = os.path.join(CONFIG['RED_DIR'],calname)
        #results.writeto(calname,clobber=True)

        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=optSpectrum)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

Monica Rainer's avatar
Monica Rainer committed
529
530
        heaspe[CONFIG['DRS_VERSION'][0]] = (CONFIG['VERSION'], CONFIG['DRS_VERSION'][1])

531
532
533
534
        #tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4])
        prihdu = fits.PrimaryHDU(data=None, header=heaspe)
        hdulist = fits.HDUList([prihdu, tbhdu])
Monica Rainer's avatar
Monica Rainer committed
535
536

        calname = os.path.join(CONFIG['RED_DIR'],calname)
537
538
        #tbhdu.writeto(calname,clobber=True)
        hdulist.writeto(calname,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
539

Monica Rainer's avatar
Monica Rainer committed
540
541
542
543
        #t1 = time.time()

        #print 's1d'
        #print calname1d
Monica Rainer's avatar
Monica Rainer committed
544
545
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'
Monica Rainer's avatar
Monica Rainer committed
546
547
548

        if CONFIG['S1D']:
            #s1d = varie.create_s1d(optSpectrum,snr,heaspe)
549
            s1d, startval = varie.create_s1d(optSpectrum,heaspe)
Monica Rainer's avatar
Monica Rainer committed
550
            heaspe[CONFIG['KEYS']['FILENAME']] = calname1d
551
            heaspe[CONFIG['KEYS']['IMANAME']] = calname1d
Monica Rainer's avatar
Monica Rainer committed
552
            heaspe['CRPIX1'] = (1.,'Reference pixel')
553
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
554
555
556
557
558
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

559
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
560
561
562
            calname1d = os.path.join(CONFIG['RED_DIR'],calname1d)
            s1dfits.writeto(calname1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
563
564
565
566
567
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':slit, 'path':calname1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':slit, 'path':calname, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
568
569
        #t2 = time.time()
        #print 's1d spectrum: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
570
571

        if hea_ima[CONFIG['KEYS']['EXTMODE']] == CONFIG['EXTPAIR']:
Monica Rainer's avatar
Monica Rainer committed
572
            return calname, fsnr, straight, dbreduced
Monica Rainer's avatar
Monica Rainer committed
573
574

        elif 'grp' in fitsfile:
Monica Rainer's avatar
Monica Rainer committed
575
            return calname, fsnr, straight, dbreduced
Monica Rainer's avatar
Monica Rainer committed
576

Monica Rainer's avatar
Monica Rainer committed
577
        return calname, fsnr, False, dbreduced
Monica Rainer's avatar
Monica Rainer committed
578
579
580
581


    def combine(self,acalib,bcalib,fsnr):

Monica Rainer's avatar
Monica Rainer committed
582
583
        dbreduced = {}

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        #abnome = acalib.replace('_A_e2ds.fits','_AB_e2ds.fits')
        #abnome1d = acalib.replace('_A_e2ds.fits','_AB_s1d.fits')
        #abnome = abnome.replace('_Agrp_e2ds.fits','_ABgrp_e2ds.fits')
        #abnome1d = abnome1d.replace('_Agrp_e2ds.fits','_ABgrp_s1d.fits')

        old = ''.join(('_A_',CONFIG['UNMERGED'],'.fits'))
        oldgrp = ''.join(('_Agrp_',CONFIG['UNMERGED'],'.fits'))
        sfx = ''.join(('_AB_',CONFIG['MERGED'],'.fits'))
        msfx = ''.join(('_AB_',CONFIG['UNMERGED'],'.fits'))
        grp = ''.join(('_ABgrp_',CONFIG['MERGED'],'.fits'))
        mgrp = ''.join(('_ABgrp_',CONFIG['UNMERGED'],'.fits'))

        abnome = acalib.replace(old,msfx)
        abnome1d = acalib.replace(old,sfx)
        abnome = abnome.replace(oldgrp,mgrp)
        abnome1d = abnome1d.replace(oldgrp,grp)

Monica Rainer's avatar
Monica Rainer committed
601
602
        #print abnome
        #print abnome1d
Monica Rainer's avatar
Monica Rainer committed
603
604

        acal = fits.open(acalib)
605
606
607

        adata = acal[1].data
        afluxes = adata.field(2)
608
609
610
611
612
613
614

        #awaves = acal[1].header
        abhea = acal[0].header
        #roneff = math.sqrt(2)*acal[1].header[CONFIG['RON_EFF'][0]]
        #gaineff = 2*acal[1].header[CONFIG['GAIN_EFF'][0]]
        roneff = math.sqrt(2)*abhea[CONFIG['RON_EFF'][0]]
        gaineff = 2*abhea[CONFIG['GAIN_EFF'][0]]
615

Monica Rainer's avatar
Monica Rainer committed
616
        bcal = fits.open(bcalib)
617
618
619
620
621

        #bfluxes = bcal[0].data
        #bwaves = bcal[0].header
        bdata = bcal[1].data
        bfluxes = bdata.field(2)
622
623
        #bwaves = bcal[1].header
        bwaves = bcal[0].header
Monica Rainer's avatar
Monica Rainer committed
624

Monica Rainer's avatar
Monica Rainer committed
625
        abcalib = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
626

Monica Rainer's avatar
Monica Rainer committed
627
        snr = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
Monica Rainer's avatar
Monica Rainer committed
628

Monica Rainer's avatar
Monica Rainer committed
629
        for o in xrange(CONFIG['N_ORD']):
630
631
            #bshift = varie.rebin(awaves,bfluxes[o],bwaves,o)
            bshift = varie.rebin(abhea,bfluxes[o],bwaves,o)
Monica Rainer's avatar
Monica Rainer committed
632
633
634
            abcalib[o] = (afluxes[o]+bshift)/2.0
            #snr.append(max(np.mean(abcalib[o][1000:1050])/np.std(abcalib[o][1000:1050]),0))
            with np.errstate(divide='ignore', invalid='ignore'):
Monica Rainer's avatar
Monica Rainer committed
635
636
                #ssnr = (np.sqrt(roneff**2 + (gaineff*2*abcalib[o])))/(gaineff*2*abcalib[o])
                ssnr = np.true_divide(np.sqrt(roneff**2 + (gaineff*2*abcalib[o])),gaineff*2*abcalib[o])
Monica Rainer's avatar
Monica Rainer committed
637
638
639
640
                snr[o] = 1.0/(np.sqrt(ssnr**2 + fsnr[o]**2))

        abcalib = np.asarray(abcalib, dtype='float32')

641
        #abhea = acal[0].header
642
        #abhea = acal[1].header
Monica Rainer's avatar
Monica Rainer committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        abhea[CONFIG['RON_EFF'][0]] = (roneff,CONFIG['RON_EFF'][1])
        abhea[CONFIG['GAIN_EFF'][0]] = (gaineff,CONFIG['GAIN_EFF'][1])
        #abhea[CONFIG['TEXP_EFF'][0]] = (,CONFIG['TEXP_EFF'][1])
        abhea[CONFIG['KEYS']['SLIT']] = 'AB'
        n = abhea[CONFIG['KEYS']['NCOMBINE']]
        key_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
        mjdA = float(abhea[key_mjdA]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        key_mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(int(n/2)),'B'))
        mjdB = float(abhea[key_mjdB]) + (float(abhea[CONFIG['KEYS']['EXPTIME']])/(2*86400))
        mjd = (mjdA+mjdB)/2.0
        abhea[CONFIG['DRS_MJD'][0]] = (mjd,CONFIG['DRS_MJD'][1])

        snr[snr==np.inf] = 0
        snr[snr==-np.inf] = 0
        snr = np.nan_to_num(snr)

Monica Rainer's avatar
Monica Rainer committed
659
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
660
661
662
663
664
665
            key_snr = ''.join((CONFIG['SNR'][0],str(o+32)))
            abhea[key_snr] = (round(np.mean(snr[o]),2),CONFIG['SNR'][1])


        heaspe = fits.Header(abhea)

666
667
668
        heaspe[CONFIG['KEYS']['FILENAME']] = os.path.basename(abnome)
        heaspe[CONFIG['KEYS']['IMANAME']] = os.path.basename(abnome)

Monica Rainer's avatar
Monica Rainer committed
669
        barycorr, hjd, bjd = varie.berv_corr(heaspe)
Monica Rainer's avatar
Monica Rainer committed
670
671
        heaspe[CONFIG['BERV'][0]] = (barycorr,CONFIG['BERV'][1])
        heaspe[CONFIG['HJD'][0]] = (hjd,CONFIG['HJD'][1])
Monica Rainer's avatar
Monica Rainer committed
672
        heaspe[CONFIG['BJD'][0]] = (bjd,CONFIG['BJD'][1])
Monica Rainer's avatar
Monica Rainer committed
673
674
675


        try:
676
677
            #am_a = acal[0].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[0].header[CONFIG['AIRMASS'][0]]
678
679
680
681
            #am_a = acal[1].header[CONFIG['AIRMASS'][0]]
            #am_b = bcal[1].header[CONFIG['AIRMASS'][0]]
            am_a = abhea[CONFIG['AIRMASS'][0]]
            am_b = bwaves[CONFIG['AIRMASS'][0]]
Monica Rainer's avatar
Monica Rainer committed
682
        except:
683
684
            #am_a = acal[0].header[CONFIG['KEYS']['AM']]
            #am_b = bcal[0].header[CONFIG['KEYS']['AM']]
685
686
            am_a = abhea[CONFIG['KEYS']['AM']]
            am_b = bwaves[CONFIG['KEYS']['AM']]
Monica Rainer's avatar
Monica Rainer committed
687
688
689
690
691
692
693
694
695
696

        am = (am_a+am_b)/2.0

        heaspe[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        try:
            heaspe[CONFIG['AIRMASS'][0]]
        except:
            heaspe[CONFIG['AIRMASS'][0]] = (heaspe[CONFIG['KEYS']['AM']],CONFIG['AIRMASS'][1])

Monica Rainer's avatar
Monica Rainer committed
697

Monica Rainer's avatar
Monica Rainer committed
698
699
        waves = np.zeros((CONFIG['N_ORD'],CONFIG['YCCD']))
        for o in xrange(CONFIG['N_ORD']):
Monica Rainer's avatar
Monica Rainer committed
700
701
            waves[o] = varie.wcalib(heaspe,o)

702
703
704
705
706
707
708
709
        #spefits = fits.PrimaryHDU(abcalib,header=heaspe)
        #wavefits = fits.ImageHDU(waves,name='WAVE')
        #snrfits = fits.ImageHDU(snr,name='SNR')

        #results = fits.HDUList([spefits,wavefits,snrfits])


        #results.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
710

Monica Rainer's avatar
Monica Rainer committed
711
712
713
714
715
716
717
718
719
        snry = round(np.mean(snr[41]),2)
        snrj = round(np.mean(snr[29]),2)
        snrh = round(np.mean(snr[14]),2)
        snrk = round(np.mean(snr[3]),2)
        self.messages.append('Nodding %s: SNR[Y band, order=73, wl=1050 nm] = %s' % ('AB',str(snry)),)
        self.messages.append('Nodding %s: SNR[J band, order=61, wl=1250 nm] = %s' % ('AB',str(snrj)),)
        self.messages.append('Nodding %s: SNR[H band, order=46, wl=1650 nm] = %s' % ('AB',str(snrh)),)
        self.messages.append('Nodding %s: SNR[K band, order=35, wl=2200 nm] = %s' % ('AB',str(snrk)),)

Monica Rainer's avatar
Monica Rainer committed
720

721
722
723
724
725
726
        orders=np.arange(CONFIG['N_ORD'])+32
        c1 = fits.Column(name='ORDER', format='I', array=orders)
        c2 = fits.Column(name='WAVE', format=''.join((str(CONFIG['YCCD']),'D')), unit='nm', array=waves)
        c3 = fits.Column(name='FLUX', format=''.join((str(CONFIG['YCCD']),'D')), array=abcalib)
        c4 = fits.Column(name='SNR', format=''.join((str(CONFIG['YCCD']),'D')), array=snr)

Monica Rainer's avatar
Monica Rainer committed
727
728
        heaspe[CONFIG['DRS_VERSION'][0]] = (CONFIG['VERSION'], CONFIG['DRS_VERSION'][1])

729
730
731
732
        #tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4],header=heaspe)
        tbhdu = fits.BinTableHDU.from_columns([c1, c2, c3, c4])
        prihdu = fits.PrimaryHDU(data=None, header=heaspe)
        hdulist = fits.HDUList([prihdu, tbhdu])
733

734
735
        #tbhdu.writeto(abnome,clobber=True)
        hdulist.writeto(abnome,clobber=True)
Monica Rainer's avatar
Monica Rainer committed
736
737


Monica Rainer's avatar
Monica Rainer committed
738
739
740
        try: obj_name = heaspe[CONFIG['KEYS']['OBJECT']]
        except: obj_name = 'NONE'

Monica Rainer's avatar
Monica Rainer committed
741
        if CONFIG['S1D']:
742
743
            heaspe[CONFIG['KEYS']['FILENAME']] = os.path.basename(abnome1d)
            heaspe[CONFIG['KEYS']['IMANAME']] = os.path.basename(abnome1d)
Monica Rainer's avatar
Monica Rainer committed
744
            #s1d = varie.create_s1d(abcalib,snr,heaspe)
745
            s1d, startval = varie.create_s1d(abcalib,heaspe)
Monica Rainer's avatar
Monica Rainer committed
746
            heaspe['CRPIX1'] = (1.,'Reference pixel')
747
            heaspe['CRVAL1'] = (startval,'Coordinates at reference pixel')
Monica Rainer's avatar
Monica Rainer committed
748
749
750
751
752
            heaspe['CDELT1'] = (CONFIG['S1D_STEP'],'Coordinates increment per pixel')

            heaspe['CTYPE1'] = ('Nanometers','Units of coordinates')
            heaspe['BUNIT'] = ('Relative Flux','Units of data values')

753
            s1dfits = fits.PrimaryHDU(s1d,header=heaspe)
Monica Rainer's avatar
Monica Rainer committed
754
755
756

            s1dfits.writeto(abnome1d,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
757
758
759
760
761
            rid = varie.random_id(12)
            dbreduced['s1d'] = {'slit':'AB', 'path':abnome1d, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'s1d', 'name':obj_name, 'id':rid}

        rid = varie.random_id(12)
        dbreduced['ms1d'] = {'slit':'AB', 'path':abnome, 'snry':snry, 'snrj':snrj, 'snrh':snrh, 'snrk':snrk, 'type':'ms1d', 'name':obj_name, 'id':rid}
Monica Rainer's avatar
Monica Rainer committed
762

Monica Rainer's avatar
Monica Rainer committed
763

Monica Rainer's avatar
Monica Rainer committed
764

Monica Rainer's avatar
Monica Rainer committed
765
766
767
768
769
770
        #calibrated = np.vstack((np.concatenate(np.flipud(awaves)),np.concatenate(np.flipud(abcalib))))
        #print calibrated

        #extract = abnome.replace('.fits','.txt')
        #ascii.write(np.transpose(calibrated),extract)

Monica Rainer's avatar
Monica Rainer committed
771
        return dbreduced
Monica Rainer's avatar
Monica Rainer committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793


    def group_avg(self):
        noddings = []
        headers = []
        am = []
        #print self.group['noddings']
        for n in self.group['noddings']:
            nod = ccdproc.CCDData.read(n, unit=u.adu)
            noddings.append(nod)
            headers.append(nod.header)
            am.append(nod.header[CONFIG['KEYS']['AM']])

        combine_nod = ccdproc.Combiner(noddings)
        nodA = combine_nod.average_combine()
        nodA.data = np.asarray(nodA.data, dtype='float32')

        nodA.header = headers[0]

        ABnome = str(os.path.basename(self.group['noddings'][0])).replace('_AB.fits','_ABgrp.fits')

        nodA.header[CONFIG['KEYS']['FILENAME']] = ABnome
794
        nodA.header[CONFIG['KEYS']['IMANAME']] = ABnome
Monica Rainer's avatar
Monica Rainer committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        nodA.header[CONFIG['GAIN_EFF'][0]] = (len(self.group['noddings'])*headers[0][CONFIG['GAIN_EFF'][0]],CONFIG['GAIN_EFF'][1])
        nodA.header[CONFIG['RON_EFF'][0]] = (headers[0][CONFIG['RON_EFF'][0]]*math.sqrt(len(self.group['noddings'])),CONFIG['RON_EFF'][1])

        nodA.header[CONFIG['KEYS']['NCOMBINE']] = len(self.group['noddings'])*2
        for n in xrange(len(self.group['noddings'])):
            keyA = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'A'))
            keyB = ''.join((CONFIG['SPEC_USED'][0],str(n+1),'B'))


            mjdA = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'A'))
            mjdB = ''.join((CONFIG['SPEC_MJD'][0],str(n+1),'B'))

            readA = ''.join((CONFIG['SPEC_USED'][0],'1','A'))
            readB = ''.join((CONFIG['SPEC_USED'][0],'1','B'))

            read_mjdA = ''.join((CONFIG['SPEC_MJD'][0],'1','A'))
            read_mjdB = ''.join((CONFIG['SPEC_MJD'][0],'1','B'))

            value_keyA = headers[n][readA]
            value_keyB = headers[n][readB]

            value_mjdA = headers[n][read_mjdA]
            value_mjdB = headers[n][read_mjdB]

            nodA.header[keyA] = (value_keyA,CONFIG['SPEC_USED'][1])
            nodA.header[mjdA] = (value_mjdA,CONFIG['SPEC_MJD'][1])

            nodA.header[keyB] = (value_keyB,CONFIG['SPEC_USED'][1])
            nodA.header[mjdB] = (value_mjdB,CONFIG['SPEC_MJD'][1])

        am = np.average(np.asarray(am))
        nodA.header[CONFIG['AIRMASS'][0]] = (am,CONFIG['AIRMASS'][1])

        heaA = nodA.header
        heaB = nodA.header
        heaA[CONFIG['KEYS']['SLIT']] = CONFIG['A']
        heaA[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
832
        heaA[CONFIG['KEYS']['IMANAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','A'))]
Monica Rainer's avatar
Monica Rainer committed
833
834
        heaB[CONFIG['KEYS']['SLIT']] = CONFIG['B']
        heaB[CONFIG['KEYS']['FILENAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]
835
        heaB[CONFIG['KEYS']['IMANAME']] = heaA[''.join((CONFIG['SPEC_USED'][0],'1','B'))]
Monica Rainer's avatar
Monica Rainer committed
836
837
838
839
840
841
842
843


        Atmpnome = os.path.join(CONFIG['TMP_DIR'],ABnome)
        #nodAfits = nodA.to_hdu()
        hdu = fits.PrimaryHDU(data=nodA.data,header=nodA.header)
        nodAfits = fits.HDUList([hdu])
        nodAfits.writeto(Atmpnome,clobber=True)

Monica Rainer's avatar
Monica Rainer committed
844

Monica Rainer's avatar
Monica Rainer committed
845
846
847
848
849
850
851
        for n in self.group['noddings']:
            os.remove(n)

        return Atmpnome, heaA, heaB


    def pair_process(self):
852
        #reduced = ','.join(map(os.path.basename,self.nodding))
Monica Rainer's avatar
Monica Rainer committed
853
        stamp = time.time()
854
855
        #db.insert_dbnight(self.dbnight, reduced, stamp)
        db.insert_dbnight(self.dbnight, self.nodding, stamp)
Monica Rainer's avatar
Monica Rainer committed
856

Monica Rainer's avatar
Monica Rainer committed
857
858
859
860
861
862
        warnings.simplefilter('ignore', category=AstropyWarning)
        if self.qualitycheck():
            #t1 = time.time()
            ab, heaA, heaB = self.createAB()
            #t2 = time.time()
            #print 'Bad pixels, create nodding: %s s' %  str(t2-t1)
Monica Rainer's avatar
Monica Rainer committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
            acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)

            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

            bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

            dbreduced = self.combine(acalib,bcalib,fsnr)
            try:
                db.insert_dbreduced(self.dbnight, dbreduced['s1d'], stamp)
            except:
                pass
            db.insert_dbreduced(self.dbnight, dbreduced['ms1d'], stamp)

Monica Rainer's avatar
Monica Rainer committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
            if straight:
                os.remove(ab)
                os.remove(straight)
            acalib = None
            bcalib = None
        self.nodding[:] = []
        self.nodlist[:] = []
        if not self.group['noddings']:
            self.group.clear()
        return

    def group_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.pair_process()
899
900
901
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1 :
                ab, heaA, heaB = self.group_avg()
Monica Rainer's avatar
Monica Rainer committed
902
903
904
                acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
                dbreduced = self.combine(acalib,bcalib,fsnr)
905
906
907
908
909
910
911
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
912
913
914
915
916
917
918
            self.messages.append('There are no available spectra in this nodding group.')
        self.group.clear()
        return

    def ingroup_process(self):
        warnings.simplefilter('ignore', category=AstropyWarning)
        self.nodding[:] = []
919
920
921
        try:
            if self.group['noddings'] and len(self.group['noddings'])>1:
                ab, heaA, heaB = self.group_avg()
Monica Rainer's avatar
Monica Rainer committed
922
923
924
                acalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['A_POS'], heaA)
                bcalib, fsnr, straight, dbreduced = self.reduce(ab,CONFIG['B_POS'], heaB)
                dbreduced = self.combine(acalib,bcalib,fsnr)
925
926
927
928
929
930
931
                acalib = None
                bcalib = None
                os.remove(ab)
                os.remove(straight)
            else:
                self.messages.append('There are no available spectra in this incomplete nodding group.')
        except:
Monica Rainer's avatar
Monica Rainer committed
932
933
934
935
936
937
            self.messages.append('There are no available spectra in this incomplete nodding group.')
        self.group.clear()
        return